1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>class BayesClassifierMachine</TITLE>
<META NAME="GENERATOR" CONTENT="DOC++ 3.4.8">
</HEAD>
<BODY BGCOLOR="#ffffff">
<H2>class <A HREF="#DOC.DOCU">BayesClassifierMachine</A></H2></H2><BLOCKQUOTE>BayesClassifierMachine is the machine used by the <TT>BayesClassifier</TT> trainer to perform a Bayes Classification using different distributions.</BLOCKQUOTE>
<HR>
<H2>Inheritance:</H2>
<APPLET CODE="ClassGraph.class" WIDTH=600 HEIGHT=95>
<param name=classes value="CObject,MObject.html,CMachine,MMachine.html,CBayesClassifierMachine,MBayesClassifierMachine.html">
<param name=before value="M,M,M">
<param name=after value="Md_SP,Md_,M">
<param name=indent value="0,1,2">
<param name=arrowdir value="down">
</APPLET>
<HR>
<DL>
<P><DL>
<DT><H3>Public Fields</H3><DD><DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>int <B><A HREF="#DOC.88.1">n_trainers</A></B>
<DD><I>the number of classes corresponds to the number of <TT>Trainer</TT></I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif><!1><A HREF="Trainer.html">Trainer</A>** <B><A HREF="#DOC.88.2">trainers</A></B>
<DD><I>the actual trainers</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>real* <B><A HREF="#DOC.88.3">log_priors</A></B>
<DD><I>the log_prior probabilities of each class.</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>real* <B><A HREF="#DOC.88.4">log_posteriors</A></B>
<DD><I>contains the log posterior probability plus the log prior of the class</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>bool <B><A HREF="#DOC.88.5">allocated_log_priors</A></B>
<DD><I>used to know if log_priors where given or allocated</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif><!1><A HREF="ClassFormat.html">ClassFormat</A>* <B><A HREF="#DOC.88.6">class_format</A></B>
<DD><I>the format of the data</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif><!1><A HREF="List.html">List</A>** <B><A HREF="#DOC.88.7">trainers_measurers</A></B>
<DD><I>the measurers for each individual trainer</I>
</DL></P>
<P><DL>
<DT><H3>Public Methods</H3><DD><DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif> <B><A HREF="#DOC.88.8">BayesClassifierMachine</A></B>( <!1><A HREF="Trainer.html">Trainer</A>**, int n_trainers_, <!1><A HREF="List.html">List</A>** trainers_measurers_, <!1><A HREF="ClassFormat.html">ClassFormat</A>* class_format_, real* log_priors_=NULL)
<DD><I>creates a machine for BayesClassifier trainers, given a vector of trainers (one per class), an associate measurer for each trainer, a class_format that explains how the classes are coded, and an eventual vector (of size <TT>n_trainers_</TT>) containing the log of the class priors</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>virtual void <B><A HREF="#DOC.88.9">forward</A></B>( <!1><A HREF="List.html">List</A>* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A> )
<DD><I>definition of virtual functions of <TT>Machine</TT> </I>
</DL></P>
</DL>
<HR><H3>Inherited from <A HREF="Machine.html">Machine</A>:</H3>
<DL>
<P><DL>
<DT><H3>Public Fields</H3><DD><DT>
<IMG ALT="o" SRC=icon2.gif>int <B>n_inputs</B>
<DT>
<IMG ALT="o" SRC=icon2.gif>int <B>n_outputs</B>
<DT>
<IMG ALT="o" SRC=icon2.gif><!1><A HREF="List.html">List</A>* <B>outputs</B>
</DL></P>
<P><DL>
<DT><H3>Public Methods</H3><DD><DT>
<IMG ALT="o" SRC=icon2.gif>virtual void <B>reset</B>()
</DL></P>
</DL>
<HR><H3>Inherited from <A HREF="Object.html">Object</A>:</H3>
<DL>
<P><DL>
<DT><H3>Public Methods</H3><DD><DT>
<IMG ALT="o" SRC=icon2.gif>virtual void <B>init</B>()
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>addOption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, int size, void* <!1><A HREF="Vec.html#DOC.81.3">ptr</A>, const char* <!1><A HREF="CmdLine.html#DOC.7.3">help</A>="", bool is_allowed_after_init=false)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>addIOption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, int* <!1><A HREF="Vec.html#DOC.81.3">ptr</A>, int init_value, const char* <!1><A HREF="CmdLine.html#DOC.7.3">help</A>="", bool is_allowed_after_init=false)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>addROption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, real* <!1><A HREF="Vec.html#DOC.81.3">ptr</A>, real init_value, const char* <!1><A HREF="CmdLine.html#DOC.7.3">help</A>="", bool is_allowed_after_init=false)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>addBOption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, bool* <!1><A HREF="Vec.html#DOC.81.3">ptr</A>, bool init_value, const char* <!1><A HREF="CmdLine.html#DOC.7.3">help</A>="", bool is_allowed_after_init=false)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>setOption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, void* <!1><A HREF="Vec.html#DOC.81.3">ptr</A>)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>setIOption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, int option)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>setROption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, real option)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>setBOption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, bool option)
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual void <B>loadFILE</B>(FILE* <!1><A HREF="Measurer.html#DOC.30.2">file</A>)
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual void <B>saveFILE</B>(FILE* <!1><A HREF="Measurer.html#DOC.30.2">file</A>)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>load</B>(const char* filename)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>save</B>(const char* filename)
</DL></P>
</DL>
<A NAME="DOC.DOCU"></A>
<HR>
<H2>Documentation</H2>
<BLOCKQUOTE>BayesClassifierMachine is the machine used by the <TT>BayesClassifier</TT>
trainer to perform a Bayes Classification using different distributions.
The output corresponds to the class that is the most probable
(using prior AND posterior information).
<P></BLOCKQUOTE>
<DL>
<A NAME="n_trainers"></A>
<A NAME="DOC.88.1"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>int n_trainers</B></TT>
<DD>the number of classes corresponds to the number of <TT>Trainer</TT>
<DL><DT><DD></DL><P>
<A NAME="trainers"></A>
<A NAME="DOC.88.2"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B><!1><A HREF="Trainer.html">Trainer</A>** trainers</B></TT>
<DD>the actual trainers
<DL><DT><DD></DL><P>
<A NAME="log_priors"></A>
<A NAME="DOC.88.3"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>real* log_priors</B></TT>
<DD>the log_prior probabilities of each class. default: log_priors are
taken as the log of the proportions in the training set.
<DL><DT><DD></DL><P>
<A NAME="log_posteriors"></A>
<A NAME="DOC.88.4"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>real* log_posteriors</B></TT>
<DD>contains the log posterior probability plus the log prior of the class
<DL><DT><DD></DL><P>
<A NAME="allocated_log_priors"></A>
<A NAME="DOC.88.5"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>bool allocated_log_priors</B></TT>
<DD>used to know if log_priors where given or allocated
<DL><DT><DD></DL><P>
<A NAME="class_format"></A>
<A NAME="DOC.88.6"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B><!1><A HREF="ClassFormat.html">ClassFormat</A>* class_format</B></TT>
<DD>the format of the data
<DL><DT><DD></DL><P>
<A NAME="trainers_measurers"></A>
<A NAME="DOC.88.7"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B><!1><A HREF="List.html">List</A>** trainers_measurers</B></TT>
<DD>the measurers for each individual trainer
<DL><DT><DD></DL><P>
<A NAME="BayesClassifierMachine"></A>
<A NAME="DOC.88.8"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B> BayesClassifierMachine( <!1><A HREF="Trainer.html">Trainer</A>**, int n_trainers_, <!1><A HREF="List.html">List</A>** trainers_measurers_, <!1><A HREF="ClassFormat.html">ClassFormat</A>* class_format_, real* log_priors_=NULL)</B></TT>
<DD>creates a machine for BayesClassifier trainers, given a vector of
trainers (one per class), an associate measurer for each trainer,
a class_format that explains how the classes are coded, and an eventual
vector (of size <TT>n_trainers_</TT>) containing the log of the class priors
<DL><DT><DD></DL><P>
<A NAME="forward"></A>
<A NAME="DOC.88.9"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>virtual void forward( <!1><A HREF="List.html">List</A>* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A> )</B></TT>
<DD>definition of virtual functions of <TT>Machine</TT>
<DL><DT><DD></DL><P></DL>
<HR><DL><DT><B>This class has no child classes.</B></DL>
<DL><DT><DT><B>Author:</B><DD>Samy Bengio (bengio@idiap.ch)
Bison Ravi (francois.belisle@idiap.ch)
<DD></DL><P><P><I><A HREF="index.html">Alphabetic index</A></I> <I><A HREF="HIER.html">HTML hierarchy of classes</A> or <A HREF="HIERjava.html">Java</A></I></P><HR>
<BR>
This page was generated with the help of <A HREF="http://docpp.sourceforge.net">DOC++</A>.
</BODY>
</HTML>
|