1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>class ClassLLCriterion</TITLE>
<META NAME="GENERATOR" CONTENT="DOC++ 3.4.8">
</HEAD>
<BODY BGCOLOR="#ffffff">
<H2>class <A HREF="#DOC.DOCU">ClassLLCriterion</A></H2></H2><BLOCKQUOTE>This criterion can be used to train *in classification* a <TT>GradientMachine</TT> object using the <TT>GMTrainer</TT> trainer.</BLOCKQUOTE>
<HR>
<H2>Inheritance:</H2>
<APPLET CODE="ClassGraph.class" WIDTH=600 HEIGHT=155>
<param name=classes value="CObject,MObject.html,CMachine,MMachine.html,CGradientMachine,MGradientMachine.html,CCriterion,MCriterion.html,CClassLLCriterion,MClassLLCriterion.html">
<param name=before value="M,M,M,M,M">
<param name=after value="Md_SPSPSP,Md_SPSP,Md_SP,Md_,M">
<param name=indent value="0,1,2,3,4">
<param name=arrowdir value="down">
</APPLET>
<HR>
<DL>
<P><DL>
<DT><H3>Public Methods</H3><DD><DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif> <B><A HREF="#DOC.5.1">ClassLLCriterion</A></B>(<!1><A HREF="ClassFormat.html">ClassFormat</A>* <!1><A HREF="Boosting.html#DOC.2.2">class_format</A>)
<DD><I>The ClassFormat is needed just to know how the targets are encoded in the data</I>
</DL></P>
</DL>
<HR><H3>Inherited from <A HREF="Criterion.html">Criterion</A>:</H3>
<DL>
<P><DL>
<DT><H3>Public Fields</H3><DD><DT>
<IMG ALT="o" SRC=icon2.gif><!1><A HREF="DataSet.html">DataSet</A>* <B>data</B>
</DL></P>
<P><DL>
<DT><H3>Public Methods</H3><DD><DT>
<IMG ALT="o" SRC=icon2.gif>virtual void <B>setDataSet</B>(<!1><A HREF="DataSet.html">DataSet</A>* data_)
</DL></P>
</DL>
<HR><H3>Inherited from <A HREF="GradientMachine.html">GradientMachine</A>:</H3>
<DL>
<P><DL>
<DT><H3>Public Fields</H3><DD><DT>
<IMG ALT="o" SRC=icon2.gif>bool <B>is_free</B>
<DT>
<IMG ALT="o" SRC=icon2.gif><!1><A HREF="List.html">List</A>* <B>params</B>
<DT>
<IMG ALT="o" SRC=icon2.gif><!1><A HREF="List.html">List</A>* <B>der_params</B>
<DT>
<IMG ALT="o" SRC=icon2.gif>int <B>n_params</B>
<DT>
<IMG ALT="o" SRC=icon2.gif>real* <B>beta</B>
</DL></P>
<P><DL>
<DT><H3>Public Methods</H3><DD><DT>
<IMG ALT="o" SRC=icon2.gif>virtual void <B>init</B>()
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual int <B>numberOfParams</B>()
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual void <B>iterInitialize</B>()
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual void <B>backward</B>(<!1><A HREF="List.html">List</A>* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>, real* <!1><A HREF="QCMachine.html#DOC.40.5">alpha</A>)
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual void <B>allocateMemory</B>()
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual void <B>freeMemory</B>()
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual void <B>loadFILE</B>(FILE* <!1><A HREF="Measurer.html#DOC.30.2">file</A>)
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual void <B>saveFILE</B>(FILE* <!1><A HREF="Measurer.html#DOC.30.2">file</A>)
</DL></P>
</DL>
<HR><H3>Inherited from <A HREF="Machine.html">Machine</A>:</H3>
<DL>
<P><DL>
<DT><H3>Public Fields</H3><DD><DT>
<IMG ALT="o" SRC=icon2.gif>int <B>n_inputs</B>
<DT>
<IMG ALT="o" SRC=icon2.gif>int <B>n_outputs</B>
<DT>
<IMG ALT="o" SRC=icon2.gif><!1><A HREF="List.html">List</A>* <B>outputs</B>
</DL></P>
<P><DL>
<DT><H3>Public Methods</H3><DD><DT>
<IMG ALT="o" SRC=icon2.gif>virtual void <B>forward</B>(<!1><A HREF="List.html">List</A>* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>)
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual void <B>reset</B>()
</DL></P>
</DL>
<HR><H3>Inherited from <A HREF="Object.html">Object</A>:</H3>
<DL>
<P><DL>
<DT><H3>Public Methods</H3><DD><DT>
<IMG ALT="o" SRC=icon2.gif>void <B>addOption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, int size, void* <!1><A HREF="Vec.html#DOC.81.3">ptr</A>, const char* <!1><A HREF="CmdLine.html#DOC.7.3">help</A>="", bool is_allowed_after_init=false)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>addIOption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, int* <!1><A HREF="Vec.html#DOC.81.3">ptr</A>, int init_value, const char* <!1><A HREF="CmdLine.html#DOC.7.3">help</A>="", bool is_allowed_after_init=false)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>addROption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, real* <!1><A HREF="Vec.html#DOC.81.3">ptr</A>, real init_value, const char* <!1><A HREF="CmdLine.html#DOC.7.3">help</A>="", bool is_allowed_after_init=false)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>addBOption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, bool* <!1><A HREF="Vec.html#DOC.81.3">ptr</A>, bool init_value, const char* <!1><A HREF="CmdLine.html#DOC.7.3">help</A>="", bool is_allowed_after_init=false)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>setOption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, void* <!1><A HREF="Vec.html#DOC.81.3">ptr</A>)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>setIOption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, int option)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>setROption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, real option)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>setBOption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, bool option)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>load</B>(const char* filename)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>save</B>(const char* filename)
</DL></P>
</DL>
<A NAME="DOC.DOCU"></A>
<HR>
<H2>Documentation</H2>
<BLOCKQUOTE>This criterion can be used to train *in classification* a <TT>GradientMachine</TT>
object using the <TT>GMTrainer</TT> trainer. It then maximizes the log likelihood
of the data.
<P>If we write <IMG BORDER=0 SRC=g000001.gif> for the output <IMG BORDER=0 SRC=g000002.gif> of the <TT>GradientMachine</TT>, it supposes that
<UL>
<LI> the outputs <IMG BORDER=0 SRC=g000001.gif> are log-probabilities.
<LI> <IMG BORDER=0 SRC=g000003.gif> is the probability for the class <IMG BORDER=0 SRC=g000002.gif>
<LI> the predicted class follows a multinomial distribution with parameters
<IMG BORDER=0 SRC=g000004.gif>
</UL>
<P></BLOCKQUOTE>
<DL>
<A NAME="ClassLLCriterion"></A>
<A NAME="DOC.5.1"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B> ClassLLCriterion(<!1><A HREF="ClassFormat.html">ClassFormat</A>* <!1><A HREF="Boosting.html#DOC.2.2">class_format</A>)</B></TT>
<DD>The ClassFormat is needed just to know how the targets are encoded in the data
<DL><DT><DD></DL><P></DL>
<HR><DL><DT><B>This class has no child classes.</B></DL>
<DL><DT><DT><B>Author:</B><DD>Ronan Collobert (collober@iro.umontreal.ca)
<DD></DL><P><P><I><A HREF="index.html">Alphabetic index</A></I> <I><A HREF="HIER.html">HTML hierarchy of classes</A> or <A HREF="HIERjava.html">Java</A></I></P><HR>
<BR>
This page was generated with the help of <A HREF="http://docpp.sourceforge.net">DOC++</A>.
</BODY>
</HTML>
|