1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>class DiagonalGMM</TITLE>
<META NAME="GENERATOR" CONTENT="DOC++ 3.4.8">
</HEAD>
<BODY BGCOLOR="#ffffff">
<H2>class <A HREF="#DOC.DOCU">DiagonalGMM</A></H2></H2><BLOCKQUOTE>This class can be used to model Diagonal Gaussian Mixture Models.</BLOCKQUOTE>
<HR>
<H2>Inheritance:</H2>
<APPLET CODE="ClassGraph.class" WIDTH=600 HEIGHT=185>
<param name=classes value="CObject,MObject.html,CMachine,MMachine.html,CGradientMachine,MGradientMachine.html,CDistribution,MDistribution.html,CDiagonalGMM,MDiagonalGMM.html,CKmeans,MKmeans.html">
<param name=before value="M,M,M,M,M,M^_">
<param name=after value="Md_SPSPSP,Md_SPSP,Md_SP,Md_,M,M">
<param name=indent value="0,1,2,3,4,4">
<param name=arrowdir value="down">
</APPLET>
<HR>
<DL>
<P><DL>
<DT><H3>Public Fields</H3><DD><DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>int <B><A HREF="#DOC.89.1">n_gaussians</A></B>
<DD><I>number of Gaussians in the mixture</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>real <B><A HREF="#DOC.89.2">prior_weights</A></B>
<DD><I>prior weights of the Gaussians, used in EM to give a small prior on each Gaussian</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif><!1><A HREF="EMTrainer.html">EMTrainer</A>* <B><A HREF="#DOC.89.3">initial_kmeans_trainer</A></B>
<DD><I>optional initializations if nothing is given, then random, at your own risks.</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif><!1><A HREF="List.html">List</A>* <B><A HREF="#DOC.89.4">initial_kmeans_trainer_measurers</A></B>
<DD><I>as well as a measurer of this trainer</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif><!1><A HREF="List.html">List</A>* <B><A HREF="#DOC.89.5">initial_params</A></B>
<DD><I>or one can give an initial parameter List</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>char* <B><A HREF="#DOC.89.6">initial_file</A></B>
<DD><I>or one can give an initial file</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>real* <B><A HREF="#DOC.89.7">log_weights</A></B>
<DD><I>the pointers to the parameters</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>real* <B><A HREF="#DOC.89.8">dlog_weights</A></B>
<DD><I>the pointers to the derivative of the parameters</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>real* <B><A HREF="#DOC.89.9">var_threshold</A></B>
<DD><I>this contains the minimal value of each variance</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>real** <B><A HREF="#DOC.89.10">log_probabilities_g</A></B>
<DD><I>for each frame, for each gaussian, keep its log probability</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>real* <B><A HREF="#DOC.89.11">sum_log_var_plus_n_obs_log_2_pi</A></B>
<DD><I>in order to faster the computation, we can do some "pre-computation" pre-computed sum_log_var + n_obs * log_2_pi</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>real** <B><A HREF="#DOC.89.12">minus_half_over_var</A></B>
<DD><I>pre-computed -05 / var</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>real** <B><A HREF="#DOC.89.13">means_acc</A></B>
<DD><I>accumulators for EM</I>
</DL></P>
<P><DL>
<DT><H3>Public Methods</H3><DD><DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif> <B><A HREF="#DOC.89.14">DiagonalGMM</A></B>(int n_observations_, int n_gaussians_, real* var_threshold_, real prior_weights_)
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>virtual real <B><A HREF="#DOC.89.15">frameLogProbabilityOneGaussian</A></B>(real* <!1><A HREF="SeqExample.html#DOC.107.4">observations</A>, real* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>, int g)
<DD><I>this method returns the log probability of the "g" Gaussian</I>
</DL></P>
</DL>
<HR><H3>Inherited from <A HREF="Distribution.html">Distribution</A>:</H3>
<DL>
<P><DL>
<DT><H3>Public Fields</H3><DD><DT>
<IMG ALT="o" SRC=icon2.gif>int <B>n_observations</B>
<DT>
<IMG ALT="o" SRC=icon2.gif>int <B>tot_n_frames</B>
<DT>
<IMG ALT="o" SRC=icon2.gif>int <B>max_n_frames</B>
<DT>
<IMG ALT="o" SRC=icon2.gif>real <B>log_probability</B>
<DT>
<IMG ALT="o" SRC=icon2.gif>real* <B>log_probabilities</B>
</DL></P>
<P><DL>
<DT><H3>Public Methods</H3><DD><DT>
<IMG ALT="o" SRC=icon2.gif>virtual real <B>logProbability</B>(<!1><A HREF="List.html">List</A>* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>)
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual real <B>viterbiLogProbability</B>(<!1><A HREF="List.html">List</A>* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>)
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual real <B>frameLogProbability</B>(real* <!1><A HREF="SeqExample.html#DOC.107.4">observations</A>, real* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>, int t)
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual void <B>frameExpectation</B>(real* <!1><A HREF="SeqExample.html#DOC.107.4">observations</A>, real* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>, int t)
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual void <B>eMIterInitialize</B>()
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual void <B>iterInitialize</B>()
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual void <B>eMSequenceInitialize</B>(<!1><A HREF="List.html">List</A>* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>)
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual void <B>sequenceInitialize</B>(<!1><A HREF="List.html">List</A>* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>)
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual void <B>eMAccPosteriors</B>(<!1><A HREF="List.html">List</A>* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>, real log_posterior)
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual void <B>frameEMAccPosteriors</B>(real* <!1><A HREF="SeqExample.html#DOC.107.4">observations</A>, real log_posterior, real* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>, int t)
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual void <B>viterbiAccPosteriors</B>(<!1><A HREF="List.html">List</A>* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>, real log_posterior)
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual void <B>frameViterbiAccPosteriors</B>(real* <!1><A HREF="SeqExample.html#DOC.107.4">observations</A>, real log_posterior, real* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>, int t)
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual void <B>eMUpdate</B>()
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual void <B>decode</B>(<!1><A HREF="List.html">List</A>* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>)
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual void <B>eMForward</B>(<!1><A HREF="List.html">List</A>* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>)
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual void <B>viterbiForward</B>(<!1><A HREF="List.html">List</A>* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>)
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual void <B>frameBackward</B>(real* <!1><A HREF="SeqExample.html#DOC.107.4">observations</A>, real* <!1><A HREF="QCMachine.html#DOC.40.5">alpha</A>, real* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>, int t)
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual void <B>viterbiBackward</B>(<!1><A HREF="List.html">List</A>* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>, real* <!1><A HREF="QCMachine.html#DOC.40.5">alpha</A>)
</DL></P>
</DL>
<HR><H3>Inherited from <A HREF="GradientMachine.html">GradientMachine</A>:</H3>
<DL>
<P><DL>
<DT><H3>Public Fields</H3><DD><DT>
<IMG ALT="o" SRC=icon2.gif>bool <B>is_free</B>
<DT>
<IMG ALT="o" SRC=icon2.gif><!1><A HREF="List.html">List</A>* <B>params</B>
<DT>
<IMG ALT="o" SRC=icon2.gif><!1><A HREF="List.html">List</A>* <B>der_params</B>
<DT>
<IMG ALT="o" SRC=icon2.gif>int <B>n_params</B>
<DT>
<IMG ALT="o" SRC=icon2.gif>real* <B>beta</B>
</DL></P>
<P><DL>
<DT><H3>Public Methods</H3><DD><DT>
<IMG ALT="o" SRC=icon2.gif>virtual void <B>init</B>()
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual int <B>numberOfParams</B>()
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual void <B>backward</B>(<!1><A HREF="List.html">List</A>* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>, real* <!1><A HREF="QCMachine.html#DOC.40.5">alpha</A>)
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual void <B>allocateMemory</B>()
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual void <B>freeMemory</B>()
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual void <B>loadFILE</B>(FILE* <!1><A HREF="Measurer.html#DOC.30.2">file</A>)
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual void <B>saveFILE</B>(FILE* <!1><A HREF="Measurer.html#DOC.30.2">file</A>)
</DL></P>
</DL>
<HR><H3>Inherited from <A HREF="Machine.html">Machine</A>:</H3>
<DL>
<P><DL>
<DT><H3>Public Fields</H3><DD><DT>
<IMG ALT="o" SRC=icon2.gif>int <B>n_inputs</B>
<DT>
<IMG ALT="o" SRC=icon2.gif>int <B>n_outputs</B>
<DT>
<IMG ALT="o" SRC=icon2.gif><!1><A HREF="List.html">List</A>* <B>outputs</B>
</DL></P>
<P><DL>
<DT><H3>Public Methods</H3><DD><DT>
<IMG ALT="o" SRC=icon2.gif>virtual void <B>forward</B>(<!1><A HREF="List.html">List</A>* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>)
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual void <B>reset</B>()
</DL></P>
</DL>
<HR><H3>Inherited from <A HREF="Object.html">Object</A>:</H3>
<DL>
<P><DL>
<DT><H3>Public Methods</H3><DD><DT>
<IMG ALT="o" SRC=icon2.gif>void <B>addOption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, int size, void* <!1><A HREF="Vec.html#DOC.81.3">ptr</A>, const char* <!1><A HREF="CmdLine.html#DOC.7.3">help</A>="", bool is_allowed_after_init=false)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>addIOption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, int* <!1><A HREF="Vec.html#DOC.81.3">ptr</A>, int init_value, const char* <!1><A HREF="CmdLine.html#DOC.7.3">help</A>="", bool is_allowed_after_init=false)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>addROption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, real* <!1><A HREF="Vec.html#DOC.81.3">ptr</A>, real init_value, const char* <!1><A HREF="CmdLine.html#DOC.7.3">help</A>="", bool is_allowed_after_init=false)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>addBOption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, bool* <!1><A HREF="Vec.html#DOC.81.3">ptr</A>, bool init_value, const char* <!1><A HREF="CmdLine.html#DOC.7.3">help</A>="", bool is_allowed_after_init=false)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>setOption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, void* <!1><A HREF="Vec.html#DOC.81.3">ptr</A>)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>setIOption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, int option)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>setROption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, real option)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>setBOption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, bool option)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>load</B>(const char* filename)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>save</B>(const char* filename)
</DL></P>
</DL>
<A NAME="DOC.DOCU"></A>
<HR>
<H2>Documentation</H2>
<BLOCKQUOTE>This class can be used to model Diagonal Gaussian Mixture Models.
They can be trained using either EM (with EMTrainer) or gradient descent
(with GMTrainer).
<P></BLOCKQUOTE>
<DL>
<A NAME="n_gaussians"></A>
<A NAME="DOC.89.1"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>int n_gaussians</B></TT>
<DD>number of Gaussians in the mixture
<DL><DT><DD></DL><P>
<A NAME="prior_weights"></A>
<A NAME="DOC.89.2"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>real prior_weights</B></TT>
<DD>prior weights of the Gaussians, used in EM to give
a small prior on each Gaussian
<DL><DT><DD></DL><P>
<A NAME="initial_kmeans_trainer"></A>
<A NAME="DOC.89.3"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B><!1><A HREF="EMTrainer.html">EMTrainer</A>* initial_kmeans_trainer</B></TT>
<DD>optional initializations
if nothing is given, then random, at your own risks.
one can give a initial trainer containing a kmeans
<DL><DT><DD></DL><P>
<A NAME="initial_kmeans_trainer_measurers"></A>
<A NAME="DOC.89.4"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B><!1><A HREF="List.html">List</A>* initial_kmeans_trainer_measurers</B></TT>
<DD>as well as a measurer of this trainer
<DL><DT><DD></DL><P>
<A NAME="initial_params"></A>
<A NAME="DOC.89.5"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B><!1><A HREF="List.html">List</A>* initial_params</B></TT>
<DD>or one can give an initial parameter List
<DL><DT><DD></DL><P>
<A NAME="initial_file"></A>
<A NAME="DOC.89.6"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>char* initial_file</B></TT>
<DD>or one can give an initial file
<DL><DT><DD></DL><P>
<A NAME="log_weights"></A>
<A NAME="DOC.89.7"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>real* log_weights</B></TT>
<DD>the pointers to the parameters
<DL><DT><DD></DL><P>
<A NAME="dlog_weights"></A>
<A NAME="DOC.89.8"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>real* dlog_weights</B></TT>
<DD>the pointers to the derivative of the parameters
<DL><DT><DD></DL><P>
<A NAME="var_threshold"></A>
<A NAME="DOC.89.9"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>real* var_threshold</B></TT>
<DD>this contains the minimal value of each variance
<DL><DT><DD></DL><P>
<A NAME="log_probabilities_g"></A>
<A NAME="DOC.89.10"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>real** log_probabilities_g</B></TT>
<DD>for each frame, for each gaussian, keep its log probability
<DL><DT><DD></DL><P>
<A NAME="sum_log_var_plus_n_obs_log_2_pi"></A>
<A NAME="DOC.89.11"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>real* sum_log_var_plus_n_obs_log_2_pi</B></TT>
<DD>in order to faster the computation, we can do some "pre-computation"
pre-computed sum_log_var + n_obs * log_2_pi
<DL><DT><DD></DL><P>
<A NAME="minus_half_over_var"></A>
<A NAME="DOC.89.12"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>real** minus_half_over_var</B></TT>
<DD>pre-computed -05 / var
<DL><DT><DD></DL><P>
<A NAME="means_acc"></A>
<A NAME="DOC.89.13"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>real** means_acc</B></TT>
<DD>accumulators for EM
<DL><DT><DD></DL><P>
<A NAME="DiagonalGMM"></A>
<A NAME="DOC.89.14"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B> DiagonalGMM(int n_observations_, int n_gaussians_, real* var_threshold_, real prior_weights_)</B></TT>
<DL><DT><DD></DL><P>
<A NAME="frameLogProbabilityOneGaussian"></A>
<A NAME="DOC.89.15"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>virtual real frameLogProbabilityOneGaussian(real* <!1><A HREF="SeqExample.html#DOC.107.4">observations</A>, real* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>, int g)</B></TT>
<DD>this method returns the log probability of the "g" Gaussian
<DL><DT><DD></DL><P></DL>
<HR>
<DL><DT><B>Direct child classes:
</B><DD><A HREF="Kmeans.html">Kmeans</A><BR>
</DL>
<DL><DT><DT><B>Author:</B><DD>Samy Bengio (bengio@idiap.ch)
<DD></DL><P><P><I><A HREF="index.html">Alphabetic index</A></I> <I><A HREF="HIER.html">HTML hierarchy of classes</A> or <A HREF="HIERjava.html">Java</A></I></P><HR>
<BR>
This page was generated with the help of <A HREF="http://docpp.sourceforge.net">DOC++</A>.
</BODY>
</HTML>
|