File: Distribution.html

package info (click to toggle)
torch 2-1
  • links: PTS
  • area: main
  • in suites: woody
  • size: 5,488 kB
  • ctags: 3,217
  • sloc: cpp: 14,272; makefile: 201
file content (334 lines) | stat: -rw-r--r-- 18,735 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>
<HEAD>
   <TITLE>class  Distribution</TITLE>
   <META NAME="GENERATOR" CONTENT="DOC++ 3.4.8">
</HEAD>
<BODY BGCOLOR="#ffffff">

<H2>class  <A HREF="#DOC.DOCU">Distribution</A></H2></H2><BLOCKQUOTE>This class is designed to handle generative distribution models such as Gaussian Mixture Models and Hidden Markov Models.</BLOCKQUOTE>
<HR>

<H2>Inheritance:</H2>
<APPLET CODE="ClassGraph.class" WIDTH=600 HEIGHT=335>
<param name=classes value="CObject,MObject.html,CMachine,MMachine.html,CGradientMachine,MGradientMachine.html,CDistribution,MDistribution.html,CTableLookupDistribution,MTableLookupDistribution.html,CParzenDistribution,MParzenDistribution.html,CMultinomial,MMultinomial.html,CHMM,MHMM.html,CFixedMachineDistribution,MFixedMachineDistribution.html,CDistrMachine,MDistrMachine.html,CDiagonalGMM,MDiagonalGMM.html">
<param name=before value="M,M,M,M,M|_,MR_,MR_,MR_,MR_,MR_,Mr_">
<param name=after value="Md_SPSP,Md_SP,Md_,M,M,M,M,M,M,M,M">
<param name=indent value="0,1,2,3,3,3,3,3,3,3,3">
<param name=arrowdir value="down">
</APPLET>
<HR>

<DL>
<P><DL>
<DT><H3>Public Fields</H3><DD><DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>int <B><A HREF="#DOC.92.1">n_observations</A></B>
<DD><I>size of the observation vectors</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>int <B><A HREF="#DOC.92.2">tot_n_frames</A></B>
<DD><I>total number of frames</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>int <B><A HREF="#DOC.92.3">max_n_frames</A></B>
<DD><I>the longest sequence in the database (used to dimensionate the variables)</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>real <B><A HREF="#DOC.92.4">log_probability</A></B>
<DD><I>the log likelihood</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>real* <B><A HREF="#DOC.92.5">log_probabilities</A></B>
<DD><I>the log likelihood for each frame</I>
</DL></P>

<P><DL>
<DT><H3>Public Methods</H3><DD><DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif> <B><A HREF="#DOC.92.6">Distribution</A></B>()
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>virtual   real <B><A HREF="#DOC.92.7">logProbability</A></B>(<!1><A HREF="List.html">List</A>* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>)
<DD><I>Returns the log probability of a sequence represented by <TT>inputs</TT></I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>virtual   real <B><A HREF="#DOC.92.8">viterbiLogProbability</A></B>(<!1><A HREF="List.html">List</A>* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>)
<DD><I>Returns the viterbi score of a sequence represented by <TT>inputs</TT></I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>virtual   real <B><A HREF="#DOC.92.9">frameLogProbability</A></B>(real* <!1><A HREF="SeqExample.html#DOC.107.4">observations</A>, real* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>, int t)
<DD><I>Returns the log probability of a frame of a sequence</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>virtual   void <B><A HREF="#DOC.92.10">frameExpectation</A></B>(real* <!1><A HREF="SeqExample.html#DOC.107.4">observations</A>, real* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>, int t)
<DD><I>Returns the expected value of <TT>observations</TT> given <TT>inputs</TT></I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>virtual   void <B><A HREF="#DOC.92.11">eMIterInitialize</A></B>()
<DD><I>Methods used to initialize the model at the beginning of each EM iteration</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>virtual   void <B><A HREF="#DOC.92.12">iterInitialize</A></B>()
<DD><I>Methods used to initialize the model at the beginning of each gradient descent iteration</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>virtual   void <B><A HREF="#DOC.92.13">eMSequenceInitialize</A></B>(<!1><A HREF="List.html">List</A>* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>)
<DD><I>Methods used to initialize the model at the beginning of each example during EM training</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>virtual   void <B><A HREF="#DOC.92.14">sequenceInitialize</A></B>(<!1><A HREF="List.html">List</A>* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>)
<DD><I>Methods used to initialize the model at the beginning of each example during gradient descent training</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>virtual   void <B><A HREF="#DOC.92.15">eMAccPosteriors</A></B>(<!1><A HREF="List.html">List</A>* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>, real log_posterior)
<DD><I>The backward step of EM for a sequence</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>virtual   void <B><A HREF="#DOC.92.16">frameEMAccPosteriors</A></B>(real* <!1><A HREF="SeqExample.html#DOC.107.4">observations</A>, real log_posterior, real* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>, int t)
<DD><I>The backward step of EM for a frame</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>virtual   void <B><A HREF="#DOC.92.17">viterbiAccPosteriors</A></B>(<!1><A HREF="List.html">List</A>* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>, real log_posterior)
<DD><I>The backward step of Viterbi learning for a sequence</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>virtual   void <B><A HREF="#DOC.92.18">frameViterbiAccPosteriors</A></B>(real* <!1><A HREF="SeqExample.html#DOC.107.4">observations</A>, real log_posterior, real* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>, int t)
<DD><I>The backward step of Viterbi for a frame</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>virtual   void <B><A HREF="#DOC.92.19">eMUpdate</A></B>()
<DD><I>The update after each iteration for EM</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>virtual   void <B><A HREF="#DOC.92.20">decode</A></B>(<!1><A HREF="List.html">List</A>* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>)
<DD><I>For some distribution like SpeechHMM, decodes the most likely path</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>virtual   void <B><A HREF="#DOC.92.21">eMForward</A></B>(<!1><A HREF="List.html">List</A>* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>)
<DD><I>Same as forward, but for EM</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>virtual   void <B><A HREF="#DOC.92.22">viterbiForward</A></B>(<!1><A HREF="List.html">List</A>* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>)
<DD><I>Same as forward, but for Viterbi</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>virtual   void <B><A HREF="#DOC.92.23">frameBackward</A></B>(real* <!1><A HREF="SeqExample.html#DOC.107.4">observations</A>, real* <!1><A HREF="QCMachine.html#DOC.40.5">alpha</A>, real* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>, int t)
<DD><I>Same as backward, but for one frame only</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>virtual   void <B><A HREF="#DOC.92.24">viterbiBackward</A></B>(<!1><A HREF="List.html">List</A>* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>, real* <!1><A HREF="QCMachine.html#DOC.40.5">alpha</A>)
<DD><I>Same as backward, but for Viterbi </I>
</DL></P>

</DL>
<HR><H3>Inherited from <A HREF="GradientMachine.html">GradientMachine</A>:</H3>
<DL>
<P><DL>
<DT><H3>Public Fields</H3><DD><DT>
<IMG ALT="o" SRC=icon2.gif>bool <B>is_free</B>
<DT>
<IMG ALT="o" SRC=icon2.gif><!1><A HREF="List.html">List</A>* <B>params</B>
<DT>
<IMG ALT="o" SRC=icon2.gif><!1><A HREF="List.html">List</A>* <B>der_params</B>
<DT>
<IMG ALT="o" SRC=icon2.gif>int <B>n_params</B>
<DT>
<IMG ALT="o" SRC=icon2.gif>real* <B>beta</B>
</DL></P>

<P><DL>
<DT><H3>Public Methods</H3><DD><DT>
<IMG ALT="o" SRC=icon2.gif>virtual   void <B>init</B>()
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual   int <B>numberOfParams</B>()
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual   void <B>backward</B>(<!1><A HREF="List.html">List</A>* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>, real* <!1><A HREF="QCMachine.html#DOC.40.5">alpha</A>)
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual   void <B>allocateMemory</B>()
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual   void <B>freeMemory</B>()
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual   void <B>loadFILE</B>(FILE* <!1><A HREF="Measurer.html#DOC.30.2">file</A>)
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual   void <B>saveFILE</B>(FILE* <!1><A HREF="Measurer.html#DOC.30.2">file</A>)
</DL></P>

</DL>
<HR><H3>Inherited from <A HREF="Machine.html">Machine</A>:</H3>
<DL>
<P><DL>
<DT><H3>Public Fields</H3><DD><DT>
<IMG ALT="o" SRC=icon2.gif>int <B>n_inputs</B>
<DT>
<IMG ALT="o" SRC=icon2.gif>int <B>n_outputs</B>
<DT>
<IMG ALT="o" SRC=icon2.gif><!1><A HREF="List.html">List</A>* <B>outputs</B>
</DL></P>

<P><DL>
<DT><H3>Public Methods</H3><DD><DT>
<IMG ALT="o" SRC=icon2.gif>virtual   void <B>forward</B>(<!1><A HREF="List.html">List</A>* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>)
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual   void <B>reset</B>()
</DL></P>

</DL>
<HR><H3>Inherited from <A HREF="Object.html">Object</A>:</H3>
<DL>
<P><DL>
<DT><H3>Public Methods</H3><DD><DT>
<IMG ALT="o" SRC=icon2.gif>void <B>addOption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, int size, void* <!1><A HREF="Vec.html#DOC.81.3">ptr</A>, const char* <!1><A HREF="CmdLine.html#DOC.7.3">help</A>="", bool is_allowed_after_init=false)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>addIOption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, int* <!1><A HREF="Vec.html#DOC.81.3">ptr</A>, int init_value, const char* <!1><A HREF="CmdLine.html#DOC.7.3">help</A>="", bool is_allowed_after_init=false)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>addROption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, real* <!1><A HREF="Vec.html#DOC.81.3">ptr</A>, real init_value, const char* <!1><A HREF="CmdLine.html#DOC.7.3">help</A>="", bool is_allowed_after_init=false)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>addBOption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, bool* <!1><A HREF="Vec.html#DOC.81.3">ptr</A>, bool init_value, const char* <!1><A HREF="CmdLine.html#DOC.7.3">help</A>="", bool is_allowed_after_init=false)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>setOption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, void* <!1><A HREF="Vec.html#DOC.81.3">ptr</A>)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>setIOption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, int option)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>setROption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, real option)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>setBOption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, bool option)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>load</B>(const char* filename)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>save</B>(const char* filename)
</DL></P>

</DL>

<A NAME="DOC.DOCU"></A>
<HR>
<H2>Documentation</H2>
<BLOCKQUOTE>This class is designed to handle generative distribution models
such as Gaussian Mixture Models and Hidden Markov Models. As 
distribution inherits from GradientMachine, they can be trained 
by gradient descent or by Expectation Maximization (EM) or even
Viterbi.

<P>Note that the output of a distribution is the negative log likelihood.

<P></BLOCKQUOTE>
<DL>

<A NAME="n_observations"></A>
<A NAME="DOC.92.1"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>int n_observations</B></TT>
<DD>size of the observation vectors
<DL><DT><DD></DL><P>
<A NAME="tot_n_frames"></A>
<A NAME="DOC.92.2"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>int tot_n_frames</B></TT>
<DD>total number of frames
<DL><DT><DD></DL><P>
<A NAME="max_n_frames"></A>
<A NAME="DOC.92.3"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>int max_n_frames</B></TT>
<DD>the longest sequence in the database (used to dimensionate the variables)
<DL><DT><DD></DL><P>
<A NAME="log_probability"></A>
<A NAME="DOC.92.4"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>real log_probability</B></TT>
<DD>the log likelihood
<DL><DT><DD></DL><P>
<A NAME="log_probabilities"></A>
<A NAME="DOC.92.5"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>real* log_probabilities</B></TT>
<DD>the log likelihood for each frame
<DL><DT><DD></DL><P>
<A NAME="Distribution"></A>
<A NAME="DOC.92.6"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B> Distribution()</B></TT>
<DL><DT><DD></DL><P>
<A NAME="logProbability"></A>
<A NAME="DOC.92.7"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>virtual   real logProbability(<!1><A HREF="List.html">List</A>* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>)</B></TT>
<DD>Returns the log probability of a sequence represented by <TT>inputs</TT>
<DL><DT><DD></DL><P>
<A NAME="viterbiLogProbability"></A>
<A NAME="DOC.92.8"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>virtual   real viterbiLogProbability(<!1><A HREF="List.html">List</A>* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>)</B></TT>
<DD>Returns the viterbi score of a sequence represented by <TT>inputs</TT>
<DL><DT><DD></DL><P>
<A NAME="frameLogProbability"></A>
<A NAME="DOC.92.9"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>virtual   real frameLogProbability(real* <!1><A HREF="SeqExample.html#DOC.107.4">observations</A>, real* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>, int t)</B></TT>
<DD>Returns the log probability of a frame of a sequence
<DL><DT><DD></DL><P>
<A NAME="frameExpectation"></A>
<A NAME="DOC.92.10"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>virtual   void frameExpectation(real* <!1><A HREF="SeqExample.html#DOC.107.4">observations</A>, real* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>, int t)</B></TT>
<DD>Returns the expected value of <TT>observations</TT> given <TT>inputs</TT>
<DL><DT><DD></DL><P>
<A NAME="eMIterInitialize"></A>
<A NAME="DOC.92.11"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>virtual   void eMIterInitialize()</B></TT>
<DD>Methods used to initialize the model at the beginning of each
EM iteration
<DL><DT><DD></DL><P>
<A NAME="iterInitialize"></A>
<A NAME="DOC.92.12"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>virtual   void iterInitialize()</B></TT>
<DD>Methods used to initialize the model at the beginning of each
gradient descent iteration
<DL><DT><DD></DL><P>
<A NAME="eMSequenceInitialize"></A>
<A NAME="DOC.92.13"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>virtual   void eMSequenceInitialize(<!1><A HREF="List.html">List</A>* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>)</B></TT>
<DD>Methods used to initialize the model at the beginning of each
example during EM training
<DL><DT><DD></DL><P>
<A NAME="sequenceInitialize"></A>
<A NAME="DOC.92.14"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>virtual   void sequenceInitialize(<!1><A HREF="List.html">List</A>* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>)</B></TT>
<DD>Methods used to initialize the model at the beginning of each
example during gradient descent training
<DL><DT><DD></DL><P>
<A NAME="eMAccPosteriors"></A>
<A NAME="DOC.92.15"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>virtual   void eMAccPosteriors(<!1><A HREF="List.html">List</A>* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>, real log_posterior)</B></TT>
<DD>The backward step of EM for a sequence
<DL><DT><DD></DL><P>
<A NAME="frameEMAccPosteriors"></A>
<A NAME="DOC.92.16"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>virtual   void frameEMAccPosteriors(real* <!1><A HREF="SeqExample.html#DOC.107.4">observations</A>, real log_posterior, real* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>, int t)</B></TT>
<DD>The backward step of EM for a frame
<DL><DT><DD></DL><P>
<A NAME="viterbiAccPosteriors"></A>
<A NAME="DOC.92.17"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>virtual   void viterbiAccPosteriors(<!1><A HREF="List.html">List</A>* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>, real log_posterior)</B></TT>
<DD>The backward step of Viterbi learning for a sequence
<DL><DT><DD></DL><P>
<A NAME="frameViterbiAccPosteriors"></A>
<A NAME="DOC.92.18"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>virtual   void frameViterbiAccPosteriors(real* <!1><A HREF="SeqExample.html#DOC.107.4">observations</A>, real log_posterior, real* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>, int t)</B></TT>
<DD>The backward step of Viterbi for a frame
<DL><DT><DD></DL><P>
<A NAME="eMUpdate"></A>
<A NAME="DOC.92.19"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>virtual   void eMUpdate()</B></TT>
<DD>The update after each iteration for EM
<DL><DT><DD></DL><P>
<A NAME="decode"></A>
<A NAME="DOC.92.20"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>virtual   void decode(<!1><A HREF="List.html">List</A>* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>)</B></TT>
<DD>For some distribution like SpeechHMM, decodes the most likely path
<DL><DT><DD></DL><P>
<A NAME="eMForward"></A>
<A NAME="DOC.92.21"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>virtual   void eMForward(<!1><A HREF="List.html">List</A>* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>)</B></TT>
<DD>Same as forward, but for EM
<DL><DT><DD></DL><P>
<A NAME="viterbiForward"></A>
<A NAME="DOC.92.22"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>virtual   void viterbiForward(<!1><A HREF="List.html">List</A>* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>)</B></TT>
<DD>Same as forward, but for Viterbi
<DL><DT><DD></DL><P>
<A NAME="frameBackward"></A>
<A NAME="DOC.92.23"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>virtual   void frameBackward(real* <!1><A HREF="SeqExample.html#DOC.107.4">observations</A>, real* <!1><A HREF="QCMachine.html#DOC.40.5">alpha</A>, real* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>, int t)</B></TT>
<DD>Same as backward, but for one frame only
<DL><DT><DD></DL><P>
<A NAME="viterbiBackward"></A>
<A NAME="DOC.92.24"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>virtual   void viterbiBackward(<!1><A HREF="List.html">List</A>* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>, real* <!1><A HREF="QCMachine.html#DOC.40.5">alpha</A>)</B></TT>
<DD>Same as backward, but for Viterbi 
<DL><DT><DD></DL><P></DL>
<HR>
<DL><DT><B>Direct child classes:
</B><DD><A HREF="TableLookupDistribution.html">TableLookupDistribution</A><BR>
<A HREF="ParzenDistribution.html">ParzenDistribution</A><BR>
<A HREF="Multinomial.html">Multinomial</A><BR>
<A HREF="HMM.html">HMM</A><BR>
<A HREF="FixedMachineDistribution.html">FixedMachineDistribution</A><BR>
<A HREF="DistrMachine.html">DistrMachine</A><BR>
<A HREF="DiagonalGMM.html">DiagonalGMM</A><BR>
</DL>

<DL><DT><DT><B>Author:</B><DD>Samy Bengio (bengio@idiap.ch)
<DD></DL><P><P><I><A HREF="index.html">Alphabetic index</A></I> <I><A HREF="HIER.html">HTML hierarchy of classes</A> or <A HREF="HIERjava.html">Java</A></I></P><HR>
<BR>
This page was generated with the help of <A HREF="http://docpp.sourceforge.net">DOC++</A>.
</BODY>
</HTML>