1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>class Distribution</TITLE>
<META NAME="GENERATOR" CONTENT="DOC++ 3.4.8">
</HEAD>
<BODY BGCOLOR="#ffffff">
<H2>class <A HREF="#DOC.DOCU">Distribution</A></H2></H2><BLOCKQUOTE>This class is designed to handle generative distribution models such as Gaussian Mixture Models and Hidden Markov Models.</BLOCKQUOTE>
<HR>
<H2>Inheritance:</H2>
<APPLET CODE="ClassGraph.class" WIDTH=600 HEIGHT=335>
<param name=classes value="CObject,MObject.html,CMachine,MMachine.html,CGradientMachine,MGradientMachine.html,CDistribution,MDistribution.html,CTableLookupDistribution,MTableLookupDistribution.html,CParzenDistribution,MParzenDistribution.html,CMultinomial,MMultinomial.html,CHMM,MHMM.html,CFixedMachineDistribution,MFixedMachineDistribution.html,CDistrMachine,MDistrMachine.html,CDiagonalGMM,MDiagonalGMM.html">
<param name=before value="M,M,M,M,M|_,MR_,MR_,MR_,MR_,MR_,Mr_">
<param name=after value="Md_SPSP,Md_SP,Md_,M,M,M,M,M,M,M,M">
<param name=indent value="0,1,2,3,3,3,3,3,3,3,3">
<param name=arrowdir value="down">
</APPLET>
<HR>
<DL>
<P><DL>
<DT><H3>Public Fields</H3><DD><DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>int <B><A HREF="#DOC.92.1">n_observations</A></B>
<DD><I>size of the observation vectors</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>int <B><A HREF="#DOC.92.2">tot_n_frames</A></B>
<DD><I>total number of frames</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>int <B><A HREF="#DOC.92.3">max_n_frames</A></B>
<DD><I>the longest sequence in the database (used to dimensionate the variables)</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>real <B><A HREF="#DOC.92.4">log_probability</A></B>
<DD><I>the log likelihood</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>real* <B><A HREF="#DOC.92.5">log_probabilities</A></B>
<DD><I>the log likelihood for each frame</I>
</DL></P>
<P><DL>
<DT><H3>Public Methods</H3><DD><DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif> <B><A HREF="#DOC.92.6">Distribution</A></B>()
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>virtual real <B><A HREF="#DOC.92.7">logProbability</A></B>(<!1><A HREF="List.html">List</A>* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>)
<DD><I>Returns the log probability of a sequence represented by <TT>inputs</TT></I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>virtual real <B><A HREF="#DOC.92.8">viterbiLogProbability</A></B>(<!1><A HREF="List.html">List</A>* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>)
<DD><I>Returns the viterbi score of a sequence represented by <TT>inputs</TT></I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>virtual real <B><A HREF="#DOC.92.9">frameLogProbability</A></B>(real* <!1><A HREF="SeqExample.html#DOC.107.4">observations</A>, real* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>, int t)
<DD><I>Returns the log probability of a frame of a sequence</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>virtual void <B><A HREF="#DOC.92.10">frameExpectation</A></B>(real* <!1><A HREF="SeqExample.html#DOC.107.4">observations</A>, real* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>, int t)
<DD><I>Returns the expected value of <TT>observations</TT> given <TT>inputs</TT></I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>virtual void <B><A HREF="#DOC.92.11">eMIterInitialize</A></B>()
<DD><I>Methods used to initialize the model at the beginning of each EM iteration</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>virtual void <B><A HREF="#DOC.92.12">iterInitialize</A></B>()
<DD><I>Methods used to initialize the model at the beginning of each gradient descent iteration</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>virtual void <B><A HREF="#DOC.92.13">eMSequenceInitialize</A></B>(<!1><A HREF="List.html">List</A>* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>)
<DD><I>Methods used to initialize the model at the beginning of each example during EM training</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>virtual void <B><A HREF="#DOC.92.14">sequenceInitialize</A></B>(<!1><A HREF="List.html">List</A>* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>)
<DD><I>Methods used to initialize the model at the beginning of each example during gradient descent training</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>virtual void <B><A HREF="#DOC.92.15">eMAccPosteriors</A></B>(<!1><A HREF="List.html">List</A>* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>, real log_posterior)
<DD><I>The backward step of EM for a sequence</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>virtual void <B><A HREF="#DOC.92.16">frameEMAccPosteriors</A></B>(real* <!1><A HREF="SeqExample.html#DOC.107.4">observations</A>, real log_posterior, real* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>, int t)
<DD><I>The backward step of EM for a frame</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>virtual void <B><A HREF="#DOC.92.17">viterbiAccPosteriors</A></B>(<!1><A HREF="List.html">List</A>* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>, real log_posterior)
<DD><I>The backward step of Viterbi learning for a sequence</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>virtual void <B><A HREF="#DOC.92.18">frameViterbiAccPosteriors</A></B>(real* <!1><A HREF="SeqExample.html#DOC.107.4">observations</A>, real log_posterior, real* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>, int t)
<DD><I>The backward step of Viterbi for a frame</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>virtual void <B><A HREF="#DOC.92.19">eMUpdate</A></B>()
<DD><I>The update after each iteration for EM</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>virtual void <B><A HREF="#DOC.92.20">decode</A></B>(<!1><A HREF="List.html">List</A>* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>)
<DD><I>For some distribution like SpeechHMM, decodes the most likely path</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>virtual void <B><A HREF="#DOC.92.21">eMForward</A></B>(<!1><A HREF="List.html">List</A>* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>)
<DD><I>Same as forward, but for EM</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>virtual void <B><A HREF="#DOC.92.22">viterbiForward</A></B>(<!1><A HREF="List.html">List</A>* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>)
<DD><I>Same as forward, but for Viterbi</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>virtual void <B><A HREF="#DOC.92.23">frameBackward</A></B>(real* <!1><A HREF="SeqExample.html#DOC.107.4">observations</A>, real* <!1><A HREF="QCMachine.html#DOC.40.5">alpha</A>, real* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>, int t)
<DD><I>Same as backward, but for one frame only</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>virtual void <B><A HREF="#DOC.92.24">viterbiBackward</A></B>(<!1><A HREF="List.html">List</A>* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>, real* <!1><A HREF="QCMachine.html#DOC.40.5">alpha</A>)
<DD><I>Same as backward, but for Viterbi </I>
</DL></P>
</DL>
<HR><H3>Inherited from <A HREF="GradientMachine.html">GradientMachine</A>:</H3>
<DL>
<P><DL>
<DT><H3>Public Fields</H3><DD><DT>
<IMG ALT="o" SRC=icon2.gif>bool <B>is_free</B>
<DT>
<IMG ALT="o" SRC=icon2.gif><!1><A HREF="List.html">List</A>* <B>params</B>
<DT>
<IMG ALT="o" SRC=icon2.gif><!1><A HREF="List.html">List</A>* <B>der_params</B>
<DT>
<IMG ALT="o" SRC=icon2.gif>int <B>n_params</B>
<DT>
<IMG ALT="o" SRC=icon2.gif>real* <B>beta</B>
</DL></P>
<P><DL>
<DT><H3>Public Methods</H3><DD><DT>
<IMG ALT="o" SRC=icon2.gif>virtual void <B>init</B>()
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual int <B>numberOfParams</B>()
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual void <B>backward</B>(<!1><A HREF="List.html">List</A>* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>, real* <!1><A HREF="QCMachine.html#DOC.40.5">alpha</A>)
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual void <B>allocateMemory</B>()
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual void <B>freeMemory</B>()
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual void <B>loadFILE</B>(FILE* <!1><A HREF="Measurer.html#DOC.30.2">file</A>)
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual void <B>saveFILE</B>(FILE* <!1><A HREF="Measurer.html#DOC.30.2">file</A>)
</DL></P>
</DL>
<HR><H3>Inherited from <A HREF="Machine.html">Machine</A>:</H3>
<DL>
<P><DL>
<DT><H3>Public Fields</H3><DD><DT>
<IMG ALT="o" SRC=icon2.gif>int <B>n_inputs</B>
<DT>
<IMG ALT="o" SRC=icon2.gif>int <B>n_outputs</B>
<DT>
<IMG ALT="o" SRC=icon2.gif><!1><A HREF="List.html">List</A>* <B>outputs</B>
</DL></P>
<P><DL>
<DT><H3>Public Methods</H3><DD><DT>
<IMG ALT="o" SRC=icon2.gif>virtual void <B>forward</B>(<!1><A HREF="List.html">List</A>* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>)
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual void <B>reset</B>()
</DL></P>
</DL>
<HR><H3>Inherited from <A HREF="Object.html">Object</A>:</H3>
<DL>
<P><DL>
<DT><H3>Public Methods</H3><DD><DT>
<IMG ALT="o" SRC=icon2.gif>void <B>addOption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, int size, void* <!1><A HREF="Vec.html#DOC.81.3">ptr</A>, const char* <!1><A HREF="CmdLine.html#DOC.7.3">help</A>="", bool is_allowed_after_init=false)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>addIOption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, int* <!1><A HREF="Vec.html#DOC.81.3">ptr</A>, int init_value, const char* <!1><A HREF="CmdLine.html#DOC.7.3">help</A>="", bool is_allowed_after_init=false)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>addROption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, real* <!1><A HREF="Vec.html#DOC.81.3">ptr</A>, real init_value, const char* <!1><A HREF="CmdLine.html#DOC.7.3">help</A>="", bool is_allowed_after_init=false)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>addBOption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, bool* <!1><A HREF="Vec.html#DOC.81.3">ptr</A>, bool init_value, const char* <!1><A HREF="CmdLine.html#DOC.7.3">help</A>="", bool is_allowed_after_init=false)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>setOption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, void* <!1><A HREF="Vec.html#DOC.81.3">ptr</A>)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>setIOption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, int option)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>setROption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, real option)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>setBOption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, bool option)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>load</B>(const char* filename)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>save</B>(const char* filename)
</DL></P>
</DL>
<A NAME="DOC.DOCU"></A>
<HR>
<H2>Documentation</H2>
<BLOCKQUOTE>This class is designed to handle generative distribution models
such as Gaussian Mixture Models and Hidden Markov Models. As
distribution inherits from GradientMachine, they can be trained
by gradient descent or by Expectation Maximization (EM) or even
Viterbi.
<P>Note that the output of a distribution is the negative log likelihood.
<P></BLOCKQUOTE>
<DL>
<A NAME="n_observations"></A>
<A NAME="DOC.92.1"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>int n_observations</B></TT>
<DD>size of the observation vectors
<DL><DT><DD></DL><P>
<A NAME="tot_n_frames"></A>
<A NAME="DOC.92.2"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>int tot_n_frames</B></TT>
<DD>total number of frames
<DL><DT><DD></DL><P>
<A NAME="max_n_frames"></A>
<A NAME="DOC.92.3"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>int max_n_frames</B></TT>
<DD>the longest sequence in the database (used to dimensionate the variables)
<DL><DT><DD></DL><P>
<A NAME="log_probability"></A>
<A NAME="DOC.92.4"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>real log_probability</B></TT>
<DD>the log likelihood
<DL><DT><DD></DL><P>
<A NAME="log_probabilities"></A>
<A NAME="DOC.92.5"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>real* log_probabilities</B></TT>
<DD>the log likelihood for each frame
<DL><DT><DD></DL><P>
<A NAME="Distribution"></A>
<A NAME="DOC.92.6"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B> Distribution()</B></TT>
<DL><DT><DD></DL><P>
<A NAME="logProbability"></A>
<A NAME="DOC.92.7"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>virtual real logProbability(<!1><A HREF="List.html">List</A>* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>)</B></TT>
<DD>Returns the log probability of a sequence represented by <TT>inputs</TT>
<DL><DT><DD></DL><P>
<A NAME="viterbiLogProbability"></A>
<A NAME="DOC.92.8"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>virtual real viterbiLogProbability(<!1><A HREF="List.html">List</A>* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>)</B></TT>
<DD>Returns the viterbi score of a sequence represented by <TT>inputs</TT>
<DL><DT><DD></DL><P>
<A NAME="frameLogProbability"></A>
<A NAME="DOC.92.9"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>virtual real frameLogProbability(real* <!1><A HREF="SeqExample.html#DOC.107.4">observations</A>, real* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>, int t)</B></TT>
<DD>Returns the log probability of a frame of a sequence
<DL><DT><DD></DL><P>
<A NAME="frameExpectation"></A>
<A NAME="DOC.92.10"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>virtual void frameExpectation(real* <!1><A HREF="SeqExample.html#DOC.107.4">observations</A>, real* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>, int t)</B></TT>
<DD>Returns the expected value of <TT>observations</TT> given <TT>inputs</TT>
<DL><DT><DD></DL><P>
<A NAME="eMIterInitialize"></A>
<A NAME="DOC.92.11"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>virtual void eMIterInitialize()</B></TT>
<DD>Methods used to initialize the model at the beginning of each
EM iteration
<DL><DT><DD></DL><P>
<A NAME="iterInitialize"></A>
<A NAME="DOC.92.12"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>virtual void iterInitialize()</B></TT>
<DD>Methods used to initialize the model at the beginning of each
gradient descent iteration
<DL><DT><DD></DL><P>
<A NAME="eMSequenceInitialize"></A>
<A NAME="DOC.92.13"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>virtual void eMSequenceInitialize(<!1><A HREF="List.html">List</A>* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>)</B></TT>
<DD>Methods used to initialize the model at the beginning of each
example during EM training
<DL><DT><DD></DL><P>
<A NAME="sequenceInitialize"></A>
<A NAME="DOC.92.14"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>virtual void sequenceInitialize(<!1><A HREF="List.html">List</A>* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>)</B></TT>
<DD>Methods used to initialize the model at the beginning of each
example during gradient descent training
<DL><DT><DD></DL><P>
<A NAME="eMAccPosteriors"></A>
<A NAME="DOC.92.15"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>virtual void eMAccPosteriors(<!1><A HREF="List.html">List</A>* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>, real log_posterior)</B></TT>
<DD>The backward step of EM for a sequence
<DL><DT><DD></DL><P>
<A NAME="frameEMAccPosteriors"></A>
<A NAME="DOC.92.16"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>virtual void frameEMAccPosteriors(real* <!1><A HREF="SeqExample.html#DOC.107.4">observations</A>, real log_posterior, real* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>, int t)</B></TT>
<DD>The backward step of EM for a frame
<DL><DT><DD></DL><P>
<A NAME="viterbiAccPosteriors"></A>
<A NAME="DOC.92.17"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>virtual void viterbiAccPosteriors(<!1><A HREF="List.html">List</A>* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>, real log_posterior)</B></TT>
<DD>The backward step of Viterbi learning for a sequence
<DL><DT><DD></DL><P>
<A NAME="frameViterbiAccPosteriors"></A>
<A NAME="DOC.92.18"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>virtual void frameViterbiAccPosteriors(real* <!1><A HREF="SeqExample.html#DOC.107.4">observations</A>, real log_posterior, real* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>, int t)</B></TT>
<DD>The backward step of Viterbi for a frame
<DL><DT><DD></DL><P>
<A NAME="eMUpdate"></A>
<A NAME="DOC.92.19"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>virtual void eMUpdate()</B></TT>
<DD>The update after each iteration for EM
<DL><DT><DD></DL><P>
<A NAME="decode"></A>
<A NAME="DOC.92.20"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>virtual void decode(<!1><A HREF="List.html">List</A>* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>)</B></TT>
<DD>For some distribution like SpeechHMM, decodes the most likely path
<DL><DT><DD></DL><P>
<A NAME="eMForward"></A>
<A NAME="DOC.92.21"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>virtual void eMForward(<!1><A HREF="List.html">List</A>* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>)</B></TT>
<DD>Same as forward, but for EM
<DL><DT><DD></DL><P>
<A NAME="viterbiForward"></A>
<A NAME="DOC.92.22"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>virtual void viterbiForward(<!1><A HREF="List.html">List</A>* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>)</B></TT>
<DD>Same as forward, but for Viterbi
<DL><DT><DD></DL><P>
<A NAME="frameBackward"></A>
<A NAME="DOC.92.23"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>virtual void frameBackward(real* <!1><A HREF="SeqExample.html#DOC.107.4">observations</A>, real* <!1><A HREF="QCMachine.html#DOC.40.5">alpha</A>, real* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>, int t)</B></TT>
<DD>Same as backward, but for one frame only
<DL><DT><DD></DL><P>
<A NAME="viterbiBackward"></A>
<A NAME="DOC.92.24"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>virtual void viterbiBackward(<!1><A HREF="List.html">List</A>* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>, real* <!1><A HREF="QCMachine.html#DOC.40.5">alpha</A>)</B></TT>
<DD>Same as backward, but for Viterbi
<DL><DT><DD></DL><P></DL>
<HR>
<DL><DT><B>Direct child classes:
</B><DD><A HREF="TableLookupDistribution.html">TableLookupDistribution</A><BR>
<A HREF="ParzenDistribution.html">ParzenDistribution</A><BR>
<A HREF="Multinomial.html">Multinomial</A><BR>
<A HREF="HMM.html">HMM</A><BR>
<A HREF="FixedMachineDistribution.html">FixedMachineDistribution</A><BR>
<A HREF="DistrMachine.html">DistrMachine</A><BR>
<A HREF="DiagonalGMM.html">DiagonalGMM</A><BR>
</DL>
<DL><DT><DT><B>Author:</B><DD>Samy Bengio (bengio@idiap.ch)
<DD></DL><P><P><I><A HREF="index.html">Alphabetic index</A></I> <I><A HREF="HIER.html">HTML hierarchy of classes</A> or <A HREF="HIERjava.html">Java</A></I></P><HR>
<BR>
This page was generated with the help of <A HREF="http://docpp.sourceforge.net">DOC++</A>.
</BODY>
</HTML>
|