File: EMTrainer.html

package info (click to toggle)
torch 2-1
  • links: PTS
  • area: main
  • in suites: woody
  • size: 5,488 kB
  • ctags: 3,217
  • sloc: cpp: 14,272; makefile: 201
file content (143 lines) | stat: -rw-r--r-- 6,935 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>
<HEAD>
   <TITLE>class  EMTrainer</TITLE>
   <META NAME="GENERATOR" CONTENT="DOC++ 3.4.8">
</HEAD>
<BODY BGCOLOR="#ffffff">

<H2>class  <A HREF="#DOC.DOCU">EMTrainer</A></H2></H2><BLOCKQUOTE>This class is used to train any distribution using the EM algorithm.</BLOCKQUOTE>
<HR>

<H2>Inheritance:</H2>
<APPLET CODE="ClassGraph.class" WIDTH=600 HEIGHT=125>
<param name=classes value="CObject,MObject.html,CTrainer,MTrainer.html,CEMTrainer,MEMTrainer.html,CViterbiTrainer,MViterbiTrainer.html">
<param name=before value="M,M,M,M^_">
<param name=after value="Md_SP,Md_,M,M">
<param name=indent value="0,1,2,2">
<param name=arrowdir value="down">
</APPLET>
<HR>

<DL>
<P><DL>
<DT><H3>Public Fields</H3><DD><DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif><!1><A HREF="Distribution.html">Distribution</A>* <B><A HREF="#DOC.93.1">distribution</A></B>
<DD><I>the distribution to train</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif><!1><A HREF="SeqDataSet.html">SeqDataSet</A>* <B><A HREF="#DOC.93.2">sdata</A></B>
<DD><I>the training set is a SeqDataSet, since we are working with distributions</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>real <B><A HREF="#DOC.93.3">end_accuracy</A></B>
<DD><I>the stopping criterion regarding the accuracy for EM</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>int <B><A HREF="#DOC.93.4">max_iter</A></B>
<DD><I>the stopping criterion regarding the number of iterations for EM</I>
</DL></P>

<P><DL>
<DT><H3>Public Methods</H3><DD><DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif> <B><A HREF="#DOC.93.5">EMTrainer</A></B>(<!1><A HREF="Distribution.html">Distribution</A>* distribution_, <!1><A HREF="SeqDataSet.html">SeqDataSet</A>* data_)
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>virtual   void <B><A HREF="#DOC.93.6">decode</A></B>(<!1><A HREF="List.html">List</A>* measurers)
<DD><I>this method computes the most likely path into the distribution.</I>
</DL></P>

</DL>
<HR><H3>Inherited from <A HREF="Trainer.html">Trainer</A>:</H3>
<DL>
<P><DL>
<DT><H3>Public Methods</H3><DD><DT>
<IMG ALT="o" SRC=icon2.gif>virtual   void <B>train</B>(<!1><A HREF="List.html">List</A>* measurers)
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual   void <B>test</B>(<!1><A HREF="List.html">List</A>* measurers)
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual   void <B>testExample</B>(<!1><A HREF="List.html">List</A>* measurers, int t)
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual   void <B>crossValidate</B>(int k_fold, <!1><A HREF="List.html">List</A>* train_measurers, <!1><A HREF="List.html">List</A>* test_measurers, <!1><A HREF="List.html">List</A>* cross_valid_measurers=NULL)
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual   void <B>loadFILE</B>(FILE* <!1><A HREF="Measurer.html#DOC.30.2">file</A>)
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual   void <B>saveFILE</B>(FILE* <!1><A HREF="Measurer.html#DOC.30.2">file</A>)
</DL></P>

</DL>
<HR><H3>Inherited from <A HREF="Object.html">Object</A>:</H3>
<DL>
<P><DL>
<DT><H3>Public Methods</H3><DD><DT>
<IMG ALT="o" SRC=icon2.gif>virtual   void <B>init</B>()
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>addOption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, int size, void* <!1><A HREF="Vec.html#DOC.81.3">ptr</A>, const char* <!1><A HREF="CmdLine.html#DOC.7.3">help</A>="", bool is_allowed_after_init=false)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>addIOption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, int* <!1><A HREF="Vec.html#DOC.81.3">ptr</A>, int init_value, const char* <!1><A HREF="CmdLine.html#DOC.7.3">help</A>="", bool is_allowed_after_init=false)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>addROption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, real* <!1><A HREF="Vec.html#DOC.81.3">ptr</A>, real init_value, const char* <!1><A HREF="CmdLine.html#DOC.7.3">help</A>="", bool is_allowed_after_init=false)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>addBOption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, bool* <!1><A HREF="Vec.html#DOC.81.3">ptr</A>, bool init_value, const char* <!1><A HREF="CmdLine.html#DOC.7.3">help</A>="", bool is_allowed_after_init=false)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>setOption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, void* <!1><A HREF="Vec.html#DOC.81.3">ptr</A>)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>setIOption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, int option)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>setROption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, real option)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>setBOption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, bool option)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>load</B>(const char* filename)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>save</B>(const char* filename)
</DL></P>

</DL>

<A NAME="DOC.DOCU"></A>
<HR>
<H2>Documentation</H2>
<BLOCKQUOTE>This class is used to train any distribution using the EM algorithm.

<P></BLOCKQUOTE>
<DL>

<A NAME="distribution"></A>
<A NAME="DOC.93.1"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B><!1><A HREF="Distribution.html">Distribution</A>* distribution</B></TT>
<DD>the distribution to train
<DL><DT><DD></DL><P>
<A NAME="sdata"></A>
<A NAME="DOC.93.2"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B><!1><A HREF="SeqDataSet.html">SeqDataSet</A>* sdata</B></TT>
<DD>the training set is a SeqDataSet, since we are working with distributions
<DL><DT><DD></DL><P>
<A NAME="end_accuracy"></A>
<A NAME="DOC.93.3"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>real end_accuracy</B></TT>
<DD>the stopping criterion regarding the accuracy for EM
<DL><DT><DD></DL><P>
<A NAME="max_iter"></A>
<A NAME="DOC.93.4"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>int max_iter</B></TT>
<DD>the stopping criterion regarding the number of iterations for EM
<DL><DT><DD></DL><P>
<A NAME="EMTrainer"></A>
<A NAME="DOC.93.5"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B> EMTrainer(<!1><A HREF="Distribution.html">Distribution</A>* distribution_, <!1><A HREF="SeqDataSet.html">SeqDataSet</A>* data_)</B></TT>
<DL><DT><DD></DL><P>
<A NAME="decode"></A>
<A NAME="DOC.93.6"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>virtual   void decode(<!1><A HREF="List.html">List</A>* measurers)</B></TT>
<DD>this method computes the most likely path into the distribution.
mainly used for sequential distribution such as HMMs.
<DL><DT><DD></DL><P></DL>
<HR>
<DL><DT><B>Direct child classes:
</B><DD><A HREF="ViterbiTrainer.html">ViterbiTrainer</A><BR>
</DL>

<DL><DT><DT><B>Author:</B><DD>Samy Bengio (bengio@idiap.ch)
<DD></DL><P><P><I><A HREF="index.html">Alphabetic index</A></I> <I><A HREF="HIER.html">HTML hierarchy of classes</A> or <A HREF="HIERjava.html">Java</A></I></P><HR>
<BR>
This page was generated with the help of <A HREF="http://docpp.sourceforge.net">DOC++</A>.
</BODY>
</HTML>