1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>class EMTrainer</TITLE>
<META NAME="GENERATOR" CONTENT="DOC++ 3.4.8">
</HEAD>
<BODY BGCOLOR="#ffffff">
<H2>class <A HREF="#DOC.DOCU">EMTrainer</A></H2></H2><BLOCKQUOTE>This class is used to train any distribution using the EM algorithm.</BLOCKQUOTE>
<HR>
<H2>Inheritance:</H2>
<APPLET CODE="ClassGraph.class" WIDTH=600 HEIGHT=125>
<param name=classes value="CObject,MObject.html,CTrainer,MTrainer.html,CEMTrainer,MEMTrainer.html,CViterbiTrainer,MViterbiTrainer.html">
<param name=before value="M,M,M,M^_">
<param name=after value="Md_SP,Md_,M,M">
<param name=indent value="0,1,2,2">
<param name=arrowdir value="down">
</APPLET>
<HR>
<DL>
<P><DL>
<DT><H3>Public Fields</H3><DD><DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif><!1><A HREF="Distribution.html">Distribution</A>* <B><A HREF="#DOC.93.1">distribution</A></B>
<DD><I>the distribution to train</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif><!1><A HREF="SeqDataSet.html">SeqDataSet</A>* <B><A HREF="#DOC.93.2">sdata</A></B>
<DD><I>the training set is a SeqDataSet, since we are working with distributions</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>real <B><A HREF="#DOC.93.3">end_accuracy</A></B>
<DD><I>the stopping criterion regarding the accuracy for EM</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>int <B><A HREF="#DOC.93.4">max_iter</A></B>
<DD><I>the stopping criterion regarding the number of iterations for EM</I>
</DL></P>
<P><DL>
<DT><H3>Public Methods</H3><DD><DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif> <B><A HREF="#DOC.93.5">EMTrainer</A></B>(<!1><A HREF="Distribution.html">Distribution</A>* distribution_, <!1><A HREF="SeqDataSet.html">SeqDataSet</A>* data_)
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>virtual void <B><A HREF="#DOC.93.6">decode</A></B>(<!1><A HREF="List.html">List</A>* measurers)
<DD><I>this method computes the most likely path into the distribution.</I>
</DL></P>
</DL>
<HR><H3>Inherited from <A HREF="Trainer.html">Trainer</A>:</H3>
<DL>
<P><DL>
<DT><H3>Public Methods</H3><DD><DT>
<IMG ALT="o" SRC=icon2.gif>virtual void <B>train</B>(<!1><A HREF="List.html">List</A>* measurers)
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual void <B>test</B>(<!1><A HREF="List.html">List</A>* measurers)
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual void <B>testExample</B>(<!1><A HREF="List.html">List</A>* measurers, int t)
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual void <B>crossValidate</B>(int k_fold, <!1><A HREF="List.html">List</A>* train_measurers, <!1><A HREF="List.html">List</A>* test_measurers, <!1><A HREF="List.html">List</A>* cross_valid_measurers=NULL)
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual void <B>loadFILE</B>(FILE* <!1><A HREF="Measurer.html#DOC.30.2">file</A>)
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual void <B>saveFILE</B>(FILE* <!1><A HREF="Measurer.html#DOC.30.2">file</A>)
</DL></P>
</DL>
<HR><H3>Inherited from <A HREF="Object.html">Object</A>:</H3>
<DL>
<P><DL>
<DT><H3>Public Methods</H3><DD><DT>
<IMG ALT="o" SRC=icon2.gif>virtual void <B>init</B>()
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>addOption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, int size, void* <!1><A HREF="Vec.html#DOC.81.3">ptr</A>, const char* <!1><A HREF="CmdLine.html#DOC.7.3">help</A>="", bool is_allowed_after_init=false)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>addIOption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, int* <!1><A HREF="Vec.html#DOC.81.3">ptr</A>, int init_value, const char* <!1><A HREF="CmdLine.html#DOC.7.3">help</A>="", bool is_allowed_after_init=false)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>addROption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, real* <!1><A HREF="Vec.html#DOC.81.3">ptr</A>, real init_value, const char* <!1><A HREF="CmdLine.html#DOC.7.3">help</A>="", bool is_allowed_after_init=false)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>addBOption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, bool* <!1><A HREF="Vec.html#DOC.81.3">ptr</A>, bool init_value, const char* <!1><A HREF="CmdLine.html#DOC.7.3">help</A>="", bool is_allowed_after_init=false)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>setOption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, void* <!1><A HREF="Vec.html#DOC.81.3">ptr</A>)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>setIOption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, int option)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>setROption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, real option)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>setBOption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, bool option)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>load</B>(const char* filename)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>save</B>(const char* filename)
</DL></P>
</DL>
<A NAME="DOC.DOCU"></A>
<HR>
<H2>Documentation</H2>
<BLOCKQUOTE>This class is used to train any distribution using the EM algorithm.
<P></BLOCKQUOTE>
<DL>
<A NAME="distribution"></A>
<A NAME="DOC.93.1"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B><!1><A HREF="Distribution.html">Distribution</A>* distribution</B></TT>
<DD>the distribution to train
<DL><DT><DD></DL><P>
<A NAME="sdata"></A>
<A NAME="DOC.93.2"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B><!1><A HREF="SeqDataSet.html">SeqDataSet</A>* sdata</B></TT>
<DD>the training set is a SeqDataSet, since we are working with distributions
<DL><DT><DD></DL><P>
<A NAME="end_accuracy"></A>
<A NAME="DOC.93.3"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>real end_accuracy</B></TT>
<DD>the stopping criterion regarding the accuracy for EM
<DL><DT><DD></DL><P>
<A NAME="max_iter"></A>
<A NAME="DOC.93.4"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>int max_iter</B></TT>
<DD>the stopping criterion regarding the number of iterations for EM
<DL><DT><DD></DL><P>
<A NAME="EMTrainer"></A>
<A NAME="DOC.93.5"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B> EMTrainer(<!1><A HREF="Distribution.html">Distribution</A>* distribution_, <!1><A HREF="SeqDataSet.html">SeqDataSet</A>* data_)</B></TT>
<DL><DT><DD></DL><P>
<A NAME="decode"></A>
<A NAME="DOC.93.6"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>virtual void decode(<!1><A HREF="List.html">List</A>* measurers)</B></TT>
<DD>this method computes the most likely path into the distribution.
mainly used for sequential distribution such as HMMs.
<DL><DT><DD></DL><P></DL>
<HR>
<DL><DT><B>Direct child classes:
</B><DD><A HREF="ViterbiTrainer.html">ViterbiTrainer</A><BR>
</DL>
<DL><DT><DT><B>Author:</B><DD>Samy Bengio (bengio@idiap.ch)
<DD></DL><P><P><I><A HREF="index.html">Alphabetic index</A></I> <I><A HREF="HIER.html">HTML hierarchy of classes</A> or <A HREF="HIERjava.html">Java</A></I></P><HR>
<BR>
This page was generated with the help of <A HREF="http://docpp.sourceforge.net">DOC++</A>.
</BODY>
</HTML>
|