1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>class MLP</TITLE>
<META NAME="GENERATOR" CONTENT="DOC++ 3.4.8">
</HEAD>
<BODY BGCOLOR="#ffffff">
<H2>class <A HREF="#DOC.DOCU">MLP</A></H2></H2><BLOCKQUOTE>This class is a simple interface to the <TT>ConnectedMachine</TT> class that ca be used to build the well-known Multi Layer Perceptron type of neural networks.</BLOCKQUOTE>
<HR>
<H2>Inheritance:</H2>
<APPLET CODE="ClassGraph.class" WIDTH=600 HEIGHT=155>
<param name=classes value="CObject,MObject.html,CMachine,MMachine.html,CGradientMachine,MGradientMachine.html,CConnectedMachine,MConnectedMachine.html,CMLP,MMLP.html">
<param name=before value="M,M,M,M,M">
<param name=after value="Md_SPSPSP,Md_SPSP,Md_SP,Md_,M">
<param name=indent value="0,1,2,3,4">
<param name=arrowdir value="down">
</APPLET>
<HR>
<DL>
<P><DL>
<DT><H3>Public Fields</H3><DD><DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif><!1><A HREF="Linear.html">Linear</A>* <B><A HREF="#DOC.114.1">hidden_layer</A></B>
<DD><I>the first <TT>Linear</TT> layer</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif><!1><A HREF="SparseLinear.html">SparseLinear</A>* <B><A HREF="#DOC.114.2">sparse_hidden_layer</A></B>
<DD><I>the first <TT>Linear</TT> layer for sparse mode</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif><!1><A HREF="Tanh.html">Tanh</A>* <B><A HREF="#DOC.114.3">hidden_tanh_layer</A></B>
<DD><I>the first <TT>Tanh</TT> layer</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif><!1><A HREF="Linear.html">Linear</A>* <B><A HREF="#DOC.114.4">outputs_layer</A></B>
<DD><I>the second <TT>Linear</TT> layer</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif><!1><A HREF="SparseLinear.html">SparseLinear</A>* <B><A HREF="#DOC.114.5">sparse_outputs_layer</A></B>
<DD><I>the second <TT>Linear</TT> layer for sparse mode, if there is no hidden units</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif><!1><A HREF="Softmax.html">Softmax</A>* <B><A HREF="#DOC.114.6">outputs_softmax_layer</A></B>
<DD><I>the optional second <TT>Softmax</TT> layer</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif><!1><A HREF="Sigmoid.html">Sigmoid</A>* <B><A HREF="#DOC.114.7">outputs_sigmoid_layer</A></B>
<DD><I>the optional second <TT>Sigmoid</TT> layer</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif><!1><A HREF="LogSoftmax.html">LogSoftmax</A>* <B><A HREF="#DOC.114.8">outputs_log_softmax_layer</A></B>
<DD><I>the optional second <TT>Softmax</TT> layer</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif><!1><A HREF="Tanh.html">Tanh</A>* <B><A HREF="#DOC.114.9">outputs_tanh_layer</A></B>
<DD><I>the optional second <TT>Tanh</TT> layer</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>int <B><A HREF="#DOC.114.10">n_hidden</A></B>
<DD><I>the number of hidden units</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>int <B><A HREF="#DOC.114.11">n_inputs</A></B>
<DD><I>the number of inputs</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>int <B><A HREF="#DOC.114.12">n_outputs</A></B>
<DD><I>the number of outputs</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>bool <B><A HREF="#DOC.114.15">is_sparse_inputs</A></B>
<DD><I>To know if the inputs are sparse</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>bool <B><A HREF="#DOC.114.16">inputs_to_outputs</A></B>
<DD><I>if this is true, add a direct connection from inputs to <TT>Linear</TT></I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif>real <B><A HREF="#DOC.114.17">weight_decay</A></B>
<DD><I>the eventual weight_decay</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif><!1><A HREF="Linear.html">Linear</A>* <B><A HREF="#DOC.114.18">add_layer</A></B>
<DD><I>the direct <TT>Linear</TT> layer</I>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif><!1><A HREF="SumMachine.html">SumMachine</A>* <B><A HREF="#DOC.114.19">sum_layer</A></B>
<DD><I>if <TT>inputs_to_outputs</TT> is true, we also need a <TT>SumMachine</TT></I>
</DL></P>
<P><DL>
<DT><H3>Public Members</H3><DD><DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif> <B><A HREF="#DOC.114.13">if this is false, add a <TT>Tanh</TT> layer</A></B>
<DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif> <B><A HREF="#DOC.114.14">Flags (in order of priority if several are true) to know what will be the output</A></B>
</DL></P>
</DL>
<HR><H3>Inherited from <A HREF="ConnectedMachine.html">ConnectedMachine</A>:</H3>
<DL>
<P><DL>
<DT><H3>Public Methods</H3><DD><DT>
<IMG ALT="o" SRC=icon2.gif>void <B>addFCL</B>(<!1><A HREF="GradientMachine.html">GradientMachine</A>* <!1><A HREF="FixedMachineDistribution.html#DOC.96.1">machine</A>)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>addMachine</B>(<!1><A HREF="GradientMachine.html">GradientMachine</A>* <!1><A HREF="FixedMachineDistribution.html#DOC.96.1">machine</A>)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>connectOn</B>(<!1><A HREF="GradientMachine.html">GradientMachine</A>* <!1><A HREF="FixedMachineDistribution.html#DOC.96.1">machine</A>)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>addLayer</B>()
</DL></P>
</DL>
<HR><H3>Inherited from <A HREF="GradientMachine.html">GradientMachine</A>:</H3>
<DL>
<P><DL>
<DT><H3>Public Fields</H3><DD><DT>
<IMG ALT="o" SRC=icon2.gif>bool <B>is_free</B>
<DT>
<IMG ALT="o" SRC=icon2.gif><!1><A HREF="List.html">List</A>* <B>params</B>
<DT>
<IMG ALT="o" SRC=icon2.gif><!1><A HREF="List.html">List</A>* <B>der_params</B>
<DT>
<IMG ALT="o" SRC=icon2.gif>int <B>n_params</B>
<DT>
<IMG ALT="o" SRC=icon2.gif>real* <B>beta</B>
</DL></P>
<P><DL>
<DT><H3>Public Methods</H3><DD><DT>
<IMG ALT="o" SRC=icon2.gif>virtual void <B>init</B>()
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual int <B>numberOfParams</B>()
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual void <B>iterInitialize</B>()
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual void <B>backward</B>(<!1><A HREF="List.html">List</A>* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>, real* <!1><A HREF="QCMachine.html#DOC.40.5">alpha</A>)
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual void <B>allocateMemory</B>()
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual void <B>freeMemory</B>()
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual void <B>loadFILE</B>(FILE* <!1><A HREF="Measurer.html#DOC.30.2">file</A>)
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual void <B>saveFILE</B>(FILE* <!1><A HREF="Measurer.html#DOC.30.2">file</A>)
</DL></P>
</DL>
<HR><H3>Inherited from <A HREF="Machine.html">Machine</A>:</H3>
<DL>
<P><DL>
<DT><H3>Public Fields</H3><DD><DT>
<IMG ALT="o" SRC=icon2.gif><!1><A HREF="List.html">List</A>* <B>outputs</B>
</DL></P>
<P><DL>
<DT><H3>Public Methods</H3><DD><DT>
<IMG ALT="o" SRC=icon2.gif>virtual void <B>forward</B>(<!1><A HREF="List.html">List</A>* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>)
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual void <B>reset</B>()
</DL></P>
</DL>
<HR><H3>Inherited from <A HREF="Object.html">Object</A>:</H3>
<DL>
<P><DL>
<DT><H3>Public Methods</H3><DD><DT>
<IMG ALT="o" SRC=icon2.gif>void <B>addOption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, int size, void* <!1><A HREF="Vec.html#DOC.81.3">ptr</A>, const char* <!1><A HREF="CmdLine.html#DOC.7.3">help</A>="", bool is_allowed_after_init=false)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>addIOption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, int* <!1><A HREF="Vec.html#DOC.81.3">ptr</A>, int init_value, const char* <!1><A HREF="CmdLine.html#DOC.7.3">help</A>="", bool is_allowed_after_init=false)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>addROption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, real* <!1><A HREF="Vec.html#DOC.81.3">ptr</A>, real init_value, const char* <!1><A HREF="CmdLine.html#DOC.7.3">help</A>="", bool is_allowed_after_init=false)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>addBOption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, bool* <!1><A HREF="Vec.html#DOC.81.3">ptr</A>, bool init_value, const char* <!1><A HREF="CmdLine.html#DOC.7.3">help</A>="", bool is_allowed_after_init=false)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>setOption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, void* <!1><A HREF="Vec.html#DOC.81.3">ptr</A>)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>setIOption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, int option)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>setROption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, real option)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>setBOption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, bool option)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>load</B>(const char* filename)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>save</B>(const char* filename)
</DL></P>
</DL>
<A NAME="DOC.DOCU"></A>
<HR>
<H2>Documentation</H2>
<BLOCKQUOTE>This class is a simple interface to the <TT>ConnectedMachine</TT> class that
ca be used to build the well-known Multi Layer Perceptron type of
neural networks. It contains a layer of <TT>Linear</TT> followed by a layer
of <TT>Tanh</TT>, followed by a layer of <TT>Linear</TT> and optionally
<UL>
<LI> a layer of softmax
<LI> or a layer of sigmoid
<LI> or a layer of log-softmax
<LI> or a layer of tanh
</UL>
Optionally, it also contains a direct connection from the inputs
to the linear layer, and if you want, you can choose sparse inputs.
<P>Options:
<TABLE BORDER>
<TR><TD>
"inputs to outputs" </TD><TD> bool </TD><TD> connections from inputs to outputs </TD><TD> [false]</TD></TR><TR><TD>
"weight decay" </TD><TD> real </TD><TD> the weight decay </TD><TD> [0]</TD></TR><TR><TD>
"softmax outputs" </TD><TD> bool </TD><TD> softmax outputs </TD><TD> [false]</TD></TR><TR><TD>
"sigmoid outputs" </TD><TD> bool </TD><TD> sigmoid outputs </TD><TD> [false]</TD></TR><TR><TD>
"log-softmax outputs" </TD><TD> bool </TD><TD> log-softmax outputs </TD><TD> [false]</TD></TR><TR><TD>
"tanh outputs" </TD><TD> bool </TD><TD> tanh outputs </TD><TD> [false]</TD></TR><TR><TD>
"sparse inputs" </TD><TD> bool </TD><TD> sparse inputs (to use with SparseDataSet) </TD><TD> [false]
</TR></TABLE>
<P></BLOCKQUOTE>
<DL>
<A NAME="hidden_layer"></A>
<A NAME="DOC.114.1"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B><!1><A HREF="Linear.html">Linear</A>* hidden_layer</B></TT>
<DD>the first <TT>Linear</TT> layer
<DL><DT><DD></DL><P>
<A NAME="sparse_hidden_layer"></A>
<A NAME="DOC.114.2"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B><!1><A HREF="SparseLinear.html">SparseLinear</A>* sparse_hidden_layer</B></TT>
<DD>the first <TT>Linear</TT> layer for sparse mode
<DL><DT><DD></DL><P>
<A NAME="hidden_tanh_layer"></A>
<A NAME="DOC.114.3"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B><!1><A HREF="Tanh.html">Tanh</A>* hidden_tanh_layer</B></TT>
<DD>the first <TT>Tanh</TT> layer
<DL><DT><DD></DL><P>
<A NAME="outputs_layer"></A>
<A NAME="DOC.114.4"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B><!1><A HREF="Linear.html">Linear</A>* outputs_layer</B></TT>
<DD>the second <TT>Linear</TT> layer
<DL><DT><DD></DL><P>
<A NAME="sparse_outputs_layer"></A>
<A NAME="DOC.114.5"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B><!1><A HREF="SparseLinear.html">SparseLinear</A>* sparse_outputs_layer</B></TT>
<DD>the second <TT>Linear</TT> layer for sparse mode, if there is no hidden units
<DL><DT><DD></DL><P>
<A NAME="outputs_softmax_layer"></A>
<A NAME="DOC.114.6"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B><!1><A HREF="Softmax.html">Softmax</A>* outputs_softmax_layer</B></TT>
<DD>the optional second <TT>Softmax</TT> layer
<DL><DT><DD></DL><P>
<A NAME="outputs_sigmoid_layer"></A>
<A NAME="DOC.114.7"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B><!1><A HREF="Sigmoid.html">Sigmoid</A>* outputs_sigmoid_layer</B></TT>
<DD>the optional second <TT>Sigmoid</TT> layer
<DL><DT><DD></DL><P>
<A NAME="outputs_log_softmax_layer"></A>
<A NAME="DOC.114.8"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B><!1><A HREF="LogSoftmax.html">LogSoftmax</A>* outputs_log_softmax_layer</B></TT>
<DD>the optional second <TT>Softmax</TT> layer
<DL><DT><DD></DL><P>
<A NAME="outputs_tanh_layer"></A>
<A NAME="DOC.114.9"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B><!1><A HREF="Tanh.html">Tanh</A>* outputs_tanh_layer</B></TT>
<DD>the optional second <TT>Tanh</TT> layer
<DL><DT><DD></DL><P>
<A NAME="n_hidden"></A>
<A NAME="DOC.114.10"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>int n_hidden</B></TT>
<DD>the number of hidden units
<DL><DT><DD></DL><P>
<A NAME="n_inputs"></A>
<A NAME="DOC.114.11"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>int n_inputs</B></TT>
<DD>the number of inputs
<DL><DT><DD></DL><P>
<A NAME="n_outputs"></A>
<A NAME="DOC.114.12"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>int n_outputs</B></TT>
<DD>the number of outputs
<DL><DT><DD></DL><P>
<A NAME="if this is false, add a #Tanh# layer"></A>
<A NAME="DOC.114.13"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B> if this is false, add a <TT>Tanh</TT> layer</B></TT>
<DD>if this is false, add a <TT>Tanh</TT> layer
<DL><DT><DD></DL><P>
<A NAME="Flags (in order of priority if several are true) to know what will be the output"></A>
<A NAME="DOC.114.14"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B> Flags (in order of priority if several are true) to know what will be the output</B></TT>
<DD>Flags (in order of priority if several are true)
to know what will be the output
<DL><DT><DD></DL><P>
<A NAME="is_sparse_inputs"></A>
<A NAME="DOC.114.15"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>bool is_sparse_inputs</B></TT>
<DD>To know if the inputs are sparse
<DL><DT><DD></DL><P>
<A NAME="inputs_to_outputs"></A>
<A NAME="DOC.114.16"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>bool inputs_to_outputs</B></TT>
<DD>if this is true, add a direct connection from inputs to <TT>Linear</TT>
<DL><DT><DD></DL><P>
<A NAME="weight_decay"></A>
<A NAME="DOC.114.17"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B>real weight_decay</B></TT>
<DD>the eventual weight_decay
<DL><DT><DD></DL><P>
<A NAME="add_layer"></A>
<A NAME="DOC.114.18"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B><!1><A HREF="Linear.html">Linear</A>* add_layer</B></TT>
<DD>the direct <TT>Linear</TT> layer
<DL><DT><DD></DL><P>
<A NAME="sum_layer"></A>
<A NAME="DOC.114.19"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B><!1><A HREF="SumMachine.html">SumMachine</A>* sum_layer</B></TT>
<DD>if <TT>inputs_to_outputs</TT> is true, we also need a <TT>SumMachine</TT>
<DL><DT><DD></DL><P></DL>
<HR><DL><DT><B>This class has no child classes.</B></DL>
<DL><DT><DT><B>Author:</B><DD>Samy Bengio (bengio@idiap.ch)
Ronan Collobert (collober@iro.umontreal.ca)
<DD></DL><P><P><I><A HREF="index.html">Alphabetic index</A></I> <I><A HREF="HIER.html">HTML hierarchy of classes</A> or <A HREF="HIERjava.html">Java</A></I></P><HR>
<BR>
This page was generated with the help of <A HREF="http://docpp.sourceforge.net">DOC++</A>.
</BODY>
</HTML>
|