File: NllCriterion.html

package info (click to toggle)
torch 2-1
  • links: PTS
  • area: main
  • in suites: woody
  • size: 5,488 kB
  • ctags: 3,217
  • sloc: cpp: 14,272; makefile: 201
file content (149 lines) | stat: -rw-r--r-- 6,056 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>
<HEAD>
   <TITLE>class  NllCriterion</TITLE>
   <META NAME="GENERATOR" CONTENT="DOC++ 3.4.8">
</HEAD>
<BODY BGCOLOR="#ffffff">

<H2>class  <A HREF="#DOC.DOCU">NllCriterion</A></H2></H2><BLOCKQUOTE>This criterion can be used to train <TT>Distribution</TT> object using the <TT>GMTrainer</TT> trainer.</BLOCKQUOTE>
<HR>

<H2>Inheritance:</H2>
<APPLET CODE="ClassGraph.class" WIDTH=600 HEIGHT=155>
<param name=classes value="CObject,MObject.html,CMachine,MMachine.html,CGradientMachine,MGradientMachine.html,CCriterion,MCriterion.html,CNllCriterion,MNllCriterion.html">
<param name=before value="M,M,M,M,M">
<param name=after value="Md_SPSPSP,Md_SPSP,Md_SP,Md_,M">
<param name=indent value="0,1,2,3,4">
<param name=arrowdir value="down">
</APPLET>
<HR>

<DL>
<P><DL>
<DT><H3>Public Methods</H3><DD><DT>
<IMG ALT="[more]" BORDER=0 SRC=icon1.gif> <B><A HREF="#DOC.103.1">NllCriterion</A></B>()
</DL></P>

</DL>
<HR><H3>Inherited from <A HREF="Criterion.html">Criterion</A>:</H3>
<DL>
<P><DL>
<DT><H3>Public Fields</H3><DD><DT>
<IMG ALT="o" SRC=icon2.gif><!1><A HREF="DataSet.html">DataSet</A>* <B>data</B>
</DL></P>

<P><DL>
<DT><H3>Public Methods</H3><DD><DT>
<IMG ALT="o" SRC=icon2.gif>virtual   void <B>setDataSet</B>(<!1><A HREF="DataSet.html">DataSet</A>* data_)
</DL></P>

</DL>
<HR><H3>Inherited from <A HREF="GradientMachine.html">GradientMachine</A>:</H3>
<DL>
<P><DL>
<DT><H3>Public Fields</H3><DD><DT>
<IMG ALT="o" SRC=icon2.gif>bool <B>is_free</B>
<DT>
<IMG ALT="o" SRC=icon2.gif><!1><A HREF="List.html">List</A>* <B>params</B>
<DT>
<IMG ALT="o" SRC=icon2.gif><!1><A HREF="List.html">List</A>* <B>der_params</B>
<DT>
<IMG ALT="o" SRC=icon2.gif>int <B>n_params</B>
<DT>
<IMG ALT="o" SRC=icon2.gif>real* <B>beta</B>
</DL></P>

<P><DL>
<DT><H3>Public Methods</H3><DD><DT>
<IMG ALT="o" SRC=icon2.gif>virtual   void <B>init</B>()
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual   int <B>numberOfParams</B>()
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual   void <B>iterInitialize</B>()
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual   void <B>backward</B>(<!1><A HREF="List.html">List</A>* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>, real* <!1><A HREF="QCMachine.html#DOC.40.5">alpha</A>)
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual   void <B>allocateMemory</B>()
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual   void <B>freeMemory</B>()
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual   void <B>loadFILE</B>(FILE* <!1><A HREF="Measurer.html#DOC.30.2">file</A>)
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual   void <B>saveFILE</B>(FILE* <!1><A HREF="Measurer.html#DOC.30.2">file</A>)
</DL></P>

</DL>
<HR><H3>Inherited from <A HREF="Machine.html">Machine</A>:</H3>
<DL>
<P><DL>
<DT><H3>Public Fields</H3><DD><DT>
<IMG ALT="o" SRC=icon2.gif>int <B>n_inputs</B>
<DT>
<IMG ALT="o" SRC=icon2.gif>int <B>n_outputs</B>
<DT>
<IMG ALT="o" SRC=icon2.gif><!1><A HREF="List.html">List</A>* <B>outputs</B>
</DL></P>

<P><DL>
<DT><H3>Public Methods</H3><DD><DT>
<IMG ALT="o" SRC=icon2.gif>virtual   void <B>forward</B>(<!1><A HREF="List.html">List</A>* <!1><A HREF="SeqExample.html#DOC.107.3">inputs</A>)
<DT>
<IMG ALT="o" SRC=icon2.gif>virtual   void <B>reset</B>()
</DL></P>

</DL>
<HR><H3>Inherited from <A HREF="Object.html">Object</A>:</H3>
<DL>
<P><DL>
<DT><H3>Public Methods</H3><DD><DT>
<IMG ALT="o" SRC=icon2.gif>void <B>addOption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, int size, void* <!1><A HREF="Vec.html#DOC.81.3">ptr</A>, const char* <!1><A HREF="CmdLine.html#DOC.7.3">help</A>="", bool is_allowed_after_init=false)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>addIOption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, int* <!1><A HREF="Vec.html#DOC.81.3">ptr</A>, int init_value, const char* <!1><A HREF="CmdLine.html#DOC.7.3">help</A>="", bool is_allowed_after_init=false)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>addROption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, real* <!1><A HREF="Vec.html#DOC.81.3">ptr</A>, real init_value, const char* <!1><A HREF="CmdLine.html#DOC.7.3">help</A>="", bool is_allowed_after_init=false)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>addBOption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, bool* <!1><A HREF="Vec.html#DOC.81.3">ptr</A>, bool init_value, const char* <!1><A HREF="CmdLine.html#DOC.7.3">help</A>="", bool is_allowed_after_init=false)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>setOption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, void* <!1><A HREF="Vec.html#DOC.81.3">ptr</A>)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>setIOption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, int option)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>setROption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, real option)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>setBOption</B>(const char* <!1><A HREF="SeqExample.html#DOC.107.9">name</A>, bool option)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>load</B>(const char* filename)
<DT>
<IMG ALT="o" SRC=icon2.gif>void <B>save</B>(const char* filename)
</DL></P>

</DL>

<A NAME="DOC.DOCU"></A>
<HR>
<H2>Documentation</H2>
<BLOCKQUOTE>This criterion can be used to train <TT>Distribution</TT> object using
the <TT>GMTrainer</TT> trainer. It then maximizes the log likelihood of the
data.

<P>The <TT>forward</TT> method always return its input, which is the negative log
likelihood, while the <TT>backward</TT> method sets the gradient to -1.

<P></BLOCKQUOTE>
<DL>

<A NAME="NllCriterion"></A>
<A NAME="DOC.103.1"></A>
<DT><IMG ALT="o" BORDER=0 SRC=icon2.gif><TT><B> NllCriterion()</B></TT>
<DL><DT><DD></DL><P></DL>

<HR><DL><DT><B>This class has no child classes.</B></DL>

<DL><DT><DT><B>Author:</B><DD>Samy Bengio (bengio@idiap.ch)
<DD></DL><P><P><I><A HREF="index.html">Alphabetic index</A></I> <I><A HREF="HIER.html">HTML hierarchy of classes</A> or <A HREF="HIERjava.html">Java</A></I></P><HR>
<BR>
This page was generated with the help of <A HREF="http://docpp.sourceforge.net">DOC++</A>.
</BODY>
</HTML>