1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
|
<!doctype html public "-//w3c//dtd html 4.0 transitional//en">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<meta name="GENERATOR" content="Mozilla/4.77 [en] (X11; U; Linux 2.4.10 i686) [Netscape]">
<meta name="Author" content="Ronan Collobert">
<meta name="Description" content="Torch Library.">
<meta name="Keywords" content="Machine Learning.">
<title>Torch Library</title>
</head>
<body text="#000000" bgcolor="#FFFFFF" link="#0000EE" vlink="#551A8B" alink="#FF0000">
<center><img SRC="images/title.jpeg" ALT="[Torch]" NOSAVE height=137 width=220><img SRC="images/release.jpeg" NOSAVE height=18 width=77>
<p><img SRC="images/torche_wind.jpeg" ALT="[XXXXX]" NOSAVE height=32 width=32></center>
<div align=right><i><font size=-1><a href="http://www.idiap.ch/~collober">Ronan
Collobert</a>,
<a href="mailto:collober@iro.umontreal.ca">collober@iro.umontreal.ca</a></font></i></div>
<center><table COLS=5 WIDTH="100%" BGCOLOR="#FFCC00" NOSAVE >
<tr ALIGN=CENTER VALIGN=CENTER NOSAVE>
<td NOWRAP NOSAVE><a href="about.html"><img SRC="images/about_bx.jpeg" ALT="[About]" NOSAVE BORDER=0 height=32 width=60></a></td>
<td NOWRAP NOSAVE><a href="introduction.html"><img SRC="images/introduction_b.jpeg" ALT="[Introduction]" NOSAVE BORDER=0 height=32 width=95></a></td>
<td NOWRAP NOSAVE><a href="docs.html"><img SRC="images/docs_b.jpeg" ALT="[Docs]" NOSAVE BORDER=0 height=32 width=52></a></td>
<td NOWRAP NOSAVE><a href="install.html"><img SRC="images/install_b.jpeg" ALT="[Install]" NOSAVE BORDER=0 height=32 width=65></a></td>
<td NOWRAP NOSAVE><a href="downloads.html"><img SRC="images/downloads_b.jpeg" ALT="[Downloads]" NOSAVE BORDER=0 height=32 width=89></a></td>
</tr>
</table></center>
<p><img SRC="images/curriculum.jpeg" ALT="[Curriculum Vitae]" NOSAVE height=41 width=253>
<blockquote>Currently, <b><i>Torch</i></b> is developed at <a href="http://www.idiap.ch">IDIAP</a>,
in Switzerland and at <a href="http://www.iro.umontreal.ca">Universite
de Montreal</a> in Québec.
<br>
<br>
<table COLS=2 WIDTH="100%" NOSAVE >
<tr NOSAVE>
<td NOSAVE>
<center>The <b><i>Torch</i></b> Team
<br><img SRC="images/team.jpeg" NOSAVE height=100 width=270></center>
</td>
<td>
<center><b><font size=-1>(Author)</font></b>
<br><i><a href="http://www.idiap.ch/~collober">Ronan Collobert</a>, <a href="mailto:collober@iro.umontreal.ca">collober@iro.umontreal.ca</a></i>
<p><b><font size=-1>(Main Contributors)</font></b>
<br><i><a href="http://www.idiap.ch/~bengio">Samy Bengio</a>, <a href="mailto:bengio@idiap.ch">bengio@idiap.ch</a></i>
<br><i><a href="http://www.idiap.ch/~marietho">Johnny Mariethoz</a>, <a href="marietho@idiap.ch">marietho@idiap.ch</a></i></center>
</td>
</tr>
</table>
</blockquote>
<p><br><img SRC="images/what.jpeg" ALT="[What's that ?]" NOSAVE height=38 width=208>
<blockquote>It's a machine-learning library, written in C++.
<br>It's distributed under the <a href="http://www.gnu.org/licenses/gpl.html">GPL</a>
licence.
<p>It is, and it will be in development forever.
<br>It's for Unix and Linux systems: other systems aren't supported at
all.
<br>It has been successfully compiled on Linux, SunOS, FreeBSD and OSF1.
<p>Currently, the main features are the following:
<ul>
<li>
A lot of things in <i>gradient-machines</i>, that is, machines which could
be learned with gradient descent. This includes Multi-Layered Perceptrons,
Radial Basis Functions and Mixtures of Experts. In fact there are a lot
of small "modules" available (Linear module, Tanh module, SoftMax module...)
that you can plug as you want to get what you want.</li>
<li>
<i>Support Vector Machine</i>, in classification and regression.</li>
<li>
A <i>Distribution</i> package which includes <i>Kmeans</i>, <i>Gaussian
Mixture Models, Hidden Markov Models </i>and<i> Bayes Classifier. </i>Moreover
classes for <i>speech recognition with embedded training </i>are available
is this package.</li>
<li>
Ensemble models such as Bagging and Adaboost.</li>
<li>
A few non-parametric models such as K-nearest-neighbors, Parzen Regression
and Parzen Density Estimator.</li>
</ul>
As it's an open library, we encourage everybody to develop new packages
which could then be included in future versions on the official website
(as long as it follows the <a href="codings.html">coding guidelines</a>).</blockquote>
<img SRC="images/why.jpeg" ALT="[Why should I use that ?]" NOSAVE height=47 width=350>
<blockquote>The aim of <b><i>Torch </i></b>is to provide the state-of-the-art
of the best algorithms in machine learning. Therefore...
<ul>
<li>
If you know C++,</li>
<br>
<li>
If you're working in machine learning and want to develop your own algorithms,</li>
<li>
or if you want to use well-known machine-learning algorithms</li>
</ul>
... <b><i>Torch </i></b>is made for you!</blockquote>
<div align=right>
<hr WIDTH="100%"><b><i><font size=-1>Thanks to IDIAP, and especially to
Frank Formaz for the URL of the website...</font></i></b></div>
<IMG SRC="/cgi-bin/nph-count?width=5&link=http://www.torch.ch/about.html" ALT="Counter" ALIGN=TOP WIDTH=75 HEIGHT=20></A>
</body>
</html>
|