1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
|
// Copyright (C) 2002 Samy Bengio (bengio@idiap.ch)
// and Ronan Collobert (collober@iro.umontreal.ca)
//
//
// This file is part of Torch. Release II.
// [The Ultimate Machine Learning Library]
//
// Torch is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// Torch is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Torch; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#include "BoostingMeasurer.h"
namespace Torch {
BoostingMeasurer::BoostingMeasurer(ClassFormat *class_format_, FILE *file_) : Measurer(NULL, file_)
{
weights = NULL;
inputs = NULL;
status = NULL;
class_format = class_format_;
}
BoostingMeasurer::BoostingMeasurer(ClassFormat *class_format_, const char *filename) : Measurer(NULL, filename)
{
weights = NULL;
inputs = NULL;
status = NULL;
class_format = class_format_;
}
void BoostingMeasurer::setData(DataSet *data_)
{
data = data_;
status = (int *)xrealloc(status, sizeof(int)*data->n_examples);
}
void BoostingMeasurer::setWeights(real *weights_)
{
weights = weights_;
}
void BoostingMeasurer::setInputs(List *inputs_)
{
inputs = inputs_;
}
void BoostingMeasurer::init()
{
Measurer::init();
measure = xalloc(sizeof(real)*2);
real *r_measure = (real *)measure;
erreur = r_measure;
erreur_c = r_measure+1;
reset();
}
void BoostingMeasurer::measureEx()
{
int c_obs = class_format->getOutputClass(inputs);
int c_des = class_format->getTargetClass(data->targets);
if(c_obs != c_des) {
*erreur_c += weights[current_example];
status[current_example++] = -1;
} else {
status[current_example++] = 1;
}
}
void BoostingMeasurer::measureIter()
{
*erreur = *erreur_c;
beta = *erreur/(1. - *erreur);
fprintf(file, "%g ==> %g for beta\n", *erreur, beta);
fflush(file);
reset();
}
void BoostingMeasurer::reset()
{
*erreur_c = 0;
current_example = 0;
}
BoostingMeasurer::~BoostingMeasurer()
{
free(status);
free(measure);
}
}
|