1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
|
// Copyright (C) 2002 Ronan Collobert (collober@iro.umontreal.ca)
//
//
// This file is part of Torch. Release II.
// [The Ultimate Machine Learning Library]
//
// Torch is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// Torch is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Torch; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#ifndef EXP_INC
#define EXP_INC
#include "GradientMachine.h"
namespace Torch {
/** Exponentiel layer for #GradientMachine#.
The number of inputs/outputs is the number
of units for this machine.
Formally speaking, $ouputs[i] = exp(inputs[i])$.
@author Ronan Collobert (collober@iro.umontreal.ca)
*/
class Exp : public GradientMachine
{
public:
/// Create a layer of size #n_units#
Exp(int n_units);
//-----
virtual int numberOfParams();
virtual void forward(List *inputs);
virtual void backward(List *inputs, real *alpha);
virtual ~Exp();
};
}
#endif
|