1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
|
// Copyright (C) 2002 Ronan Collobert (collober@iro.umontreal.ca)
//
//
// This file is part of Torch. Release II.
// [The Ultimate Machine Learning Library]
//
// Torch is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// Torch is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Torch; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#ifndef KERNEL_INC
#define KERNEL_INC
#include "general.h"
#include "DataSet.h"
#include "EuclideanDataSet.h"
namespace Torch {
/** Kernel class.
Note that all kernels are based on the #dotProduct#
of their associated #DataSet#.
@author Ronan Collobert (collober@iro.umontreal.ca)
*/
class Kernel : public Object
{
public:
DataSet *data;
//-----
///
Kernel(DataSet *data_);
/** Kernel between the example #i# and #j# of the dataset.
This function takes in account the #selected_examples#
of the dataset.
*/
virtual real eval(int i, int j) = 0;
/** Kernel between the example #i# of the dataset and
one example #y#. The structure of #y# \emph{must}
be the same as those generated in #inputs# by
the dataset #data#.
Note that this function don't care about the #selected_examples#
of the dataset: #i# is a \emph{real} index.
*/
virtual real realEval(int i, List *y) = 0;
/// Reset the kernel (Default, do nothing)
virtual void reset();
//-----
virtual ~Kernel();
};
/** DotProduct
@author Ronan Collobert (collober@iro.umontreal.ca)
*/
class DotKernel : public Kernel
{
public:
EuclideanDataSet *edata;
///
DotKernel(EuclideanDataSet *edata_);
virtual real eval(int i, int j);
virtual real realEval(int i, List *y);
virtual ~DotKernel();
};
/** Polynomial $k(x,y) = (s*x.y+r)^d$.
Options:
\begin{tabular}{lcll}
"degree" & int & degree of the polynome & [2]\\
"mul cst" & real & s & [1]\\
"add cst" & real & r & [1]
\end{tabular}
@author Ronan Collobert (collober@iro.umontreal.ca)
*/
class PolynomialKernel : public Kernel
{
public:
EuclideanDataSet *edata;
int d;
real s, r;
///
PolynomialKernel(EuclideanDataSet *edata_);
virtual real eval(int i, int j);
virtual real realEval(int i, List *y);
virtual ~PolynomialKernel();
};
/** Gaussian $k(x,y) = exp(-g * ||x-y||^2)$
Options:
\begin{tabular}{lcll}
"gamma" & real & g & [0.01]
\end{tabular}
@author Ronan Collobert (collober@iro.umontreal.ca)
*/
class GaussianKernel : public Kernel
{
public:
EuclideanDataSet *edata;
real g;
real *precalc;
real *precalc_real;
bool precalc_alloc;
///
GaussianKernel(EuclideanDataSet *edata_);
virtual void reset();
virtual real eval(int i, int j);
virtual real realEval(int i, List *y);
virtual ~GaussianKernel();
};
/** Sigmoid $k(x,y) = tanh(s*x.y+r)$
Options:
\begin{tabular}{lcll}
"mul cst" & real & s & [1]\\
"add cst" & real & r & [1]
\end{tabular}
@author Ronan Collobert (collober@iro.umontreal.ca)
*/
class SigmoidKernel : public Kernel
{
public:
EuclideanDataSet *edata;
real s, r;
///
SigmoidKernel(EuclideanDataSet *edata_);
virtual real eval(int i, int j);
virtual real realEval(int i, List *y);
virtual ~SigmoidKernel();
};
}
#endif
|