1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
|
// Copyright (C) 2002 Ronan Collobert (collober@iro.umontreal.ca)
//
//
// This file is part of Torch. Release II.
// [The Ultimate Machine Learning Library]
//
// Torch is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// Torch is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Torch; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#ifndef QC_CACHE_INC
#define QC_CACHE_INC
#include "Object.h"
namespace Torch {
/** "Cache" used by the Quadratic Constrained Trainer (#QCTrainer#).
This class provides the Q (symetric) matrix of the
quadratic problem.
@author Ronan Collobert (collober@iro.umontreal.ca)
@see QCTrainer
*/
class QCCache : public Object
{
public:
//-----
///
QCCache();
/// Returns the adress of the row/column #index# for the Q matrix.
virtual real *adressCache(int index) = 0;
/// Allocate the cache.
virtual void allocate() = 0;
/// Erase the cache (but don't destroy it).
virtual void clear() = 0;
/// Destroy the cache.
virtual void destroy() = 0;
/** The index of the active variables will be those
contained in #active_var#, and the number of active
variable will be #*n_active_var_#.
(It's usefull for some problems)
@see QCMachine
@see QCTrainer
*/
virtual void setBoosterMode(int *n_active_var_, int *active_var_) = 0;
//-----
virtual ~QCCache();
};
}
#endif
|