1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
|
// Copyright (C) 2002 Ronan Collobert (collober@iro.umontreal.ca)
//
//
// This file is part of Torch. Release II.
// [The Ultimate Machine Learning Library]
//
// Torch is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// Torch is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Torch; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#ifndef QC_TRAINER_INC
#define QC_TRAINER_INC
#include "Trainer.h"
#include "QCMachine.h"
#include "QCCache.h"
namespace Torch {
/** Train a #QCMachine#.
With the conventions of QCMachine.h,
Q is given by the class QCCache (in #cache#)
Options:
\begin{tabular}{lcll}
"unshrink" & bool & unshrink or not unshrink & [false] \\
"max unshrink" & int & maximal number of unshrinking & [1] \\
"iter shrink" & int & minimal number of iterations to shrink& [100] \\
"eps shrink" & real & shrinking accuracy & [1E-4 (f) 1E-9 (d)] \\
"end accuracy" & real & end accuracy & [0.01] \\
"iter message" & int & number of iterations between messages & [1000]
\end{tabular}
Note: "iter shrink" must be carefully chosen.
Read http://www.ai.mit.edu/projects/jmlr/papers/volume1/collobert01a/collobert01a.ps.gz
for more details.
@author Ronan Collobert (collober@iro.umontreal.ca)
@see QCCache
@see QCMachine
*/
class QCTrainer : public Trainer
{
public:
// ohhh boy, c'est la zone
QCMachine *qcmachine;
QCCache *cache;
int n_unshrink;
int n_max_unshrink;
real *k_xi;
real *k_xj;
real old_alpha_xi;
real old_alpha_xj;
real current_error;
int *active_var_new;
int n_active_var_new;
int l; // le nb de alphas
bool deja_shrink;
bool unshrink_mode;
real *y;
real *alpha;
real *grad;
real eps_shrink;
real eps_fin;
real eps_bornes;
int n_active_var;
int *active_var;
int *not_at_bound_at_iter;
int iter;
int n_iter_min_to_shrink;
int n_iter_message;
char *status_alpha;
real *Cup;
real *Cdown;
//-----
///
QCTrainer(QCMachine *qcmachine_, DataSet *data_, QCCache *cache_);
/** Train it...
Before calling this function, #grad# in #qcmachine#
must contain the gradient of QP(alpha) with respect
to alpha = 0.
( = $beta$, with the conventions of QCMachine.h)
Moreover #alpha# in #qcmachine# has to be zero.
*/
void train(List *measurers);
//-----
void prepareToLaunch();
void atomiseAll();
bool bCompute();
bool selectVariables(int *i, int *j);
int checkShrinking(real bmin, real bmax);
void shrink();
void unShrink();
void analyticSolve(int xi, int xj);
void updateStatus(int i);
inline bool isNotUp(int i) { return(status_alpha[i] != 2); };
inline bool isNotDown(int i) { return(status_alpha[i] != 1); };
virtual ~QCTrainer();
};
}
#endif
|