1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
|
// Copyright (C) 2002 Ronan Collobert (collober@iro.umontreal.ca)
//
//
// This file is part of Torch. Release II.
// [The Ultimate Machine Learning Library]
//
// Torch is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// Torch is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Torch; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#include "Tanh.h"
namespace Torch {
Tanh::Tanh(int n_units)
{
n_inputs = n_units;
n_outputs = n_units;
}
int Tanh::numberOfParams()
{
return(0);
}
void Tanh::forward(List *inputs)
{
real *ptr_out = (real *)outputs->ptr;
while(inputs)
{
real *x = (real *)inputs->ptr;
for(int j = 0; j < inputs->n; j++)
*ptr_out++ = tanh(*x++);
inputs = inputs->next;
}
}
void Tanh::backward(List *inputs, real *alpha)
{
real *alpha_ptr = alpha;
real *beta_ptr = beta;
real *out_ptr = (real *)outputs->ptr;
for(int i = 0; i < n_outputs; i++)
{
real z = *out_ptr++;
*beta_ptr++ = *alpha_ptr++ * (1. - z*z);
}
}
Tanh::~Tanh()
{
}
}
|