File: Trainer.cc

package info (click to toggle)
torch 2-1
  • links: PTS
  • area: main
  • in suites: woody
  • size: 5,488 kB
  • ctags: 3,217
  • sloc: cpp: 14,272; makefile: 201
file content (271 lines) | stat: -rw-r--r-- 6,358 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
// Copyright (C) 2002 Ronan Collobert (collober@iro.umontreal.ca)
//                
//
// This file is part of Torch. Release II.
// [The Ultimate Machine Learning Library]
//
// Torch is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// Torch is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Torch; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA

#include "Trainer.h"

namespace Torch {

Trainer::Trainer(Machine *machine_, DataSet *data_)
{
  machine = machine_;
  data = data_;
}

void Trainer::test(List *measurers)
{
  DataSet **datas;
  Measurer ***mes;
  int *n_mes;
  int n_datas;

  message("Trainer: testing");

  extractMeasurers(measurers, NULL, &datas, &mes, &n_mes, &n_datas);

  for(int andrea = 0; andrea < n_datas; andrea++)
  {
    DataSet *dataset = datas[andrea];

    for(int i = 0; i < n_mes[andrea]; i++)
      mes[andrea][i]->reset();

    for(int t = 0; t < dataset->n_examples; t++)
    {
      dataset->setExample(t);
      machine->forward(dataset->inputs);
    
      for(int i = 0; i < n_mes[andrea]; i++)
        mes[andrea][i]->measureEx();
    }
  
    for(int i = 0; i < n_mes[andrea]; i++)
      mes[andrea][i]->measureIter();

    for(int i = 0; i < n_mes[andrea]; i++)
      mes[andrea][i]->measureEnd();
  }

  deleteExtractedMeasurers(datas, mes, n_mes, n_datas);
}

void Trainer::crossValidate(int k_fold, List *train_measurers, List *test_measurers, List *cross_valid_measurers)
{
  int *mix_subset = (int *)xalloc(sizeof(int)*data->n_examples);
  getShuffledIndices(mix_subset, data->n_examples);
  data->pushSubset(mix_subset, data->n_examples);

  List *measurers_ = cross_valid_measurers;
  while(measurers_)
  {
    ((Measurer *)measurers_->ptr)->reset();
    measurers_ = measurers_->next;
  }

  int taille_subset = data->n_examples/k_fold;
  int *test_subset = (int *)xalloc(sizeof(int)*(taille_subset+data->n_examples%k_fold));
  int *train_subset = (int *)xalloc(sizeof(int)*(data->n_examples-taille_subset));

  for(int i = 0; i < k_fold; i++)
  {
    int n_train_subset = 0;
    int n_test_subset = 0;
    
    for(int j = 0; j < i*taille_subset; j++)
      train_subset[n_train_subset++] = j;
    for(int j = i*taille_subset; j < (i+1)*taille_subset; j++)
      test_subset[n_test_subset++] = j;
    if(i == k_fold-1)
    {
      for(int j = (i+1)*taille_subset; j < data->n_examples; j++)
        test_subset[n_test_subset++] = j;
    }
    else
    {
      for(int j = (i+1)*taille_subset; j < data->n_examples; j++)
        train_subset[n_train_subset++] = j;
    }

    data->pushSubset(train_subset, n_train_subset);
    machine->reset();
    train(train_measurers);
    data->popSubset();

    data->pushSubset(test_subset, n_test_subset);
    test(test_measurers);
    data->popSubset();

    measurers_ = cross_valid_measurers;
    while(measurers_)
    {
      ((Measurer *)measurers_->ptr)->measureIter();
      measurers_ = measurers_->next;
    }
  }

  measurers_ = cross_valid_measurers;
  while(measurers_)
  {
    ((Measurer *)measurers_->ptr)->measureEnd();
    measurers_ = measurers_->next;
  }
  
  data->popSubset();
  free(test_subset);
  free(train_subset);
  free(mix_subset);
}

// A vos risques et perils...
void Trainer::testExample(List *measurers, int t)
{
  if(!measurers)
    return;

  DataSet *dataset = ((Measurer *)(measurers->ptr))->data;
  dataset->setExample(t);
  machine->forward(dataset->inputs);

  while(measurers)
  {
    Measurer *mes = (Measurer *)measurers->ptr;
    mes->reset();
    mes->measureEx();
    measurers = measurers->next;
  }
}

Trainer::~Trainer()
{
}

void extractMeasurers(List *measurers, DataSet *train, DataSet ***datas, Measurer ****mes, int **n_mes, int *n_datas)
{
  DataSet **datas_;
  List *measurers_ = measurers;
  Measurer ***mes_;
  int *n_mes_;

  int n_measurers = 0;
  while(measurers_)
  {
    n_measurers++;
    measurers_ = measurers_->next;
  }

//  printf("%d measurers found\n", n_measurers);

  // bourrin... au cas tout != train... et tous =!
  n_measurers++;

  // Alloc boeuf
  datas_ = (DataSet **)xalloc(sizeof(DataSet *)*n_measurers);
  mes_ = (Measurer ***)xalloc(sizeof(Measurer **)*n_measurers);
  n_mes_ = (int *)xalloc(sizeof(int)*n_measurers);
  for(int i = 0; i < n_measurers; i++)
  {
    mes_[i] = (Measurer **)xalloc(sizeof(Measurer *)*n_measurers);
    n_mes_[i] = 0;
  }

  // Cherche les datas
  int n_datas_ = 0;

  if(train)
  {
    datas_[0] = train;
    n_datas_++;
  }

  measurers_ = measurers;
  while(measurers_)
  {
    DataSet *curr_dat = ((Measurer *)measurers_->ptr)->data;

    bool already_exists = false;
    for(int i = 0; i < n_datas_; i++)
    {
      if(datas_[i] == curr_dat)
      {
        already_exists = true;
        break;
      }
    }

    if(!already_exists)
    {
      datas_[n_datas_] = curr_dat;
      n_datas_++;
    }
    measurers_ = measurers_->next;
  }
  
  // Cherche les measurers associes aux datas
  measurers_ = measurers;
  while(measurers_)
  {
    DataSet *curr_dat = ((Measurer *)measurers_->ptr)->data;

    int the_i = -1;
    for(the_i = 0; the_i < n_datas_; the_i++)
    {
      if(datas_[the_i] == curr_dat)
        break;
    }

    mes_[the_i][n_mes_[the_i]++] = (Measurer *)measurers_->ptr;
    measurers_ = measurers_->next;
  }

  *datas = datas_;
  *mes = mes_;
  *n_mes = n_mes_;
  *n_datas = n_datas_;
}

void deleteExtractedMeasurers(DataSet **datas, Measurer ***mes, int *n_mes, int n_datas)
{
  int n_measurers = 0;
  for(int i = 0; i < n_datas; i++)
    n_measurers += n_mes[i];

  // voir plus haut...
  n_measurers++;

  free(datas);
  for(int i = 0; i < n_measurers; i++)
    free(mes[i]);
  free(mes);
  free(n_mes);  
}

void Trainer::loadFILE(FILE *file)
{
  data->loadFILE(file);
  machine->loadFILE(file);
}

void Trainer::saveFILE(FILE *file)
{
  data->saveFILE(file);
  machine->saveFILE(file);
}

}