1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
|
// Copyright (C) 2002 Ronan Collobert (collober@iro.umontreal.ca)
//
//
// This file is part of Torch. Release II.
// [The Ultimate Machine Learning Library]
//
// Torch is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// Torch is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Torch; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#ifndef TRAINER_INC
#define TRAINER_INC
#include "Object.h"
#include "Machine.h"
#include "DataSet.h"
#include "List.h"
namespace Torch {
// Methodes utiles
/** Make a table of measurers from a #List#.
Given a #List# of #measurers#,
and, if you want, a #train# #DataSet# (else NULL)
\begin{itemize}
\item Returns all datasets associated to the measurers in #datas#.
For i != j, (*datas)[i] != (*datas)[j].
Moreover, if #train# != NULL, (*datas)[0] = #train#.
\item Returns the list of measurers associated to (*datas)[i] in (*mes)[i].
\item Returns the number of measureurs associated to (*datas)[i] in (*n_mes)[i].
\item Returns in *n_datas the number of datasets in *datas.
\end{itemize}
(Memory allocations are made by the fonction: use
#deleteExtractedMeasurers()# to free memory)
@see deleteExtractedMeasurers
@author Ronan Collobert (collober@iro.umontreal.ca)
*/
void extractMeasurers(List *measurers, DataSet *train, DataSet ***datas, Measurer ****mes, int **n_mes, int *n_datas);
/** Free memory allocations did by #extractMeasurers()#.
@see extractMeasurers
@author Ronan Collobert (collober@iro.umontreal.ca)
*/
void deleteExtractedMeasurers(DataSet **datas, Measurer ***mes, int *n_mes, int n_datas);
/** Trainer.
A trainer takes a #Machine# and a #DataSet#,
and is able to train this machine on this dataset.
*/
class Trainer : public Object
{
public:
DataSet *data;
Machine *machine;
//-----
///
Trainer(Machine *machine_, DataSet *data_);
//-----
/** Train the machine.
The Trainer has to call the measurers
when it want.
*/
virtual void train(List *measurers) = 0;
/** Test the machine.
This method call all the measurers,
for all the examples of their associated
dataset.
It's already written...
*/
virtual void test(List *measurers);
/** Test on one example.
It supposes that all the measurers
have the same dataset, and call the
measurers for the example #t# of this
dataset.
*/
virtual void testExample(List *measurers, int t);
/** K-fold cross-validation.
Do a K-fold cross-validation on #data#.
\begin{itemize}
\item #k_fold# is the number of subsets that
it will make on #data#.
\item #train_measurers# are the measurers called
during the train phase. (NULL if nothing).
\item #test_measurers# are the measurers called
during the test phase.
\item #cross_valid_measurers# are the measurers
called after each iteration of the cross-validation.
(these last measurers should'nt use #measureEx()#)
\end{itemize}
*/
virtual void crossValidate(int k_fold, List *train_measurers, List *test_measurers, List *cross_valid_measurers=NULL);
/// Load the parameters of the machine and the dataset
virtual void loadFILE(FILE *file);
/// Save the parameters of the machine and the dataset
virtual void saveFILE(FILE *file);
//-----
virtual ~Trainer();
};
}
#endif
|