1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
|
// Copyright (C) 2002 Ronan Collobert (collober@iro.umontreal.ca)
//
//
// This file is part of Torch. Release II.
// [The Ultimate Machine Learning Library]
//
// Torch is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// Torch is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Torch; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#include "Vec.h"
#include "mx_low_level.h"
namespace Torch {
Vec::Vec(real * ptr_, int n_dim)
{
ptr = ptr_;
n = n_dim;
ptr_is_allocated = false;
}
Vec::Vec(int n_dim)
{
n = n_dim;
ptr = (real *) xalloc(sizeof(real) * n);
ptr_is_allocated = true;
}
void Vec::copy(Vec * vec, int start_i)
{
if (vec == this)
return;
real *ptr_r = vec->ptr + start_i;
real *ptr_w = ptr + start_i;
for (int i = 0; i < n - start_i; i++)
*ptr_w++ = *ptr_r++;
}
void Vec::zero()
{
real *ptr_w = ptr;
for (int i = 0; i < n; i++)
*ptr_w++ = 0.;
}
real Vec::norm1(Vec * weights)
{
real sum = 0.0;
real *ptr_x = ptr;
if (weights)
{
real *ptr_w = weights->ptr;
for (int i = 0; i < n; i++)
sum += *ptr_w++ * fabs(*ptr_x++);
}
else
{
for (int i = 0; i < n; i++)
sum += fabs(*ptr_x++);
}
return sum;
}
real Vec::norm2(Vec * weights)
{
real sum = 0.0;
real *ptr_x = ptr;
if (weights)
{
real *ptr_w = weights->ptr;
for (int i = 0; i < n; i++)
{
real z = *ptr_x++;
sum += *ptr_w++ * z * z;
}
}
else
{
for (int i = 0; i < n; i++)
{
real z = *ptr_x++;
sum += z * z;
}
}
return sqrt(sum);
}
real Vec::normInf()
{
real *ptr_x = ptr;
real max_val = fabs(*ptr_x++);
for (int i = 1; i < n; i++)
{
real z = fabs(*ptr_x);
if (max_val < z)
max_val = z;
ptr_x++;
}
return max_val;
}
real Vec::iP(Vec * vec, int start_i)
{
return (mxIp__(ptr + start_i, vec->ptr + start_i, n - start_i));
}
Vec *Vec::subVec(int dim1, int dim2)
{
Vec *vec = new Vec(ptr + dim1, dim2 - dim1 + 1);
return (vec);
}
Vec::~Vec()
{
if (ptr_is_allocated)
free(ptr);
}
}
|