File: mx_sym_eig.cc

package info (click to toggle)
torch 2-1
  • links: PTS
  • area: main
  • in suites: woody
  • size: 5,488 kB
  • ctags: 3,217
  • sloc: cpp: 14,272; makefile: 201
file content (198 lines) | stat: -rw-r--r-- 5,056 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
// Copyright (C) 2002 Zbigniew Leyk (zbigniew.leyk@anu.edu.au)
//                and David E. Stewart (david.stewart@anu.edu.au)
//                and Ronan Collobert (collober@iro.umontreal.ca)
//                
//
// This file is part of Torch. Release II.
// [The Ultimate Machine Learning Library]
//
// Torch is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// Torch is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Torch; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA

/*
	File containing routines for symmetric eigenvalue problems
*/

#include "mx_sym_eig.h"

namespace Torch {


#define	SQRT2	1.4142135623730949
#define	sgn(x)	( (x) >= 0 ? 1 : -1 )

/* trieig -- finds eigenvalues of symmetric tridiagonal matrices
	-- matrix represented by a pair of vectors a (diag entries)
		and b (sub- & super-diag entries)
	-- eigenvalues in a on return */
void mxTriEig(Vec * a, Vec * b, Mat * mat_q)
{
  int i_min, i_max;
  real b_sqr, bk, ak1, bk1, ak2, bk2, z;
  real c, c2, cs, s, s2, d, mu;

  int n = a->n;
  real *a_ptr = a->ptr;
  real *b_ptr = b->ptr;

  i_min = 0;
  while (i_min < n)		/* outer while loop */
  {
    /* find i_max to suit;
       submatrix i_min..i_max should be irreducible */
    i_max = n - 1;
    for (int i = i_min; i < n - 1; i++)
    {
      if (b_ptr[i] == 0.0)
      {
	i_max = i;
	break;
      }
    }

    if (i_max <= i_min)
    {
      i_min = i_max + 1;
      continue;			/* outer while loop */
    }

    /* repeatedly perform QR method until matrix splits */
    bool split = false;
    while (!split)		/* inner while loop */
    {
      /* find Wilkinson shift */
      d = (a_ptr[i_max - 1] - a_ptr[i_max]) / 2;
      b_sqr = b_ptr[i_max - 1] * b_ptr[i_max - 1];
      mu = a_ptr[i_max] - b_sqr / (d + sgn(d) * sqrt(d * d + b_sqr));

      /* initial Givens' rotation */
      mx_givens(a_ptr[i_min] - mu, b_ptr[i_min], &c, &s);
      s = -s;
      if (fabs(c) < SQRT2)
      {
	c2 = c * c;
	s2 = 1 - c2;
      }
      else
      {
	s2 = s * s;
	c2 = 1 - s2;
      }
      cs = c * s;
      ak1 =
	  c2 * a_ptr[i_min] + s2 * a_ptr[i_min + 1] -
	  2 * cs * b_ptr[i_min];
      bk1 =
	  cs * (a_ptr[i_min] - a_ptr[i_min + 1]) + (c2 -
						    s2) * b_ptr[i_min];
      ak2 =
	  s2 * a_ptr[i_min] + c2 * a_ptr[i_min + 1] +
	  2 * cs * b_ptr[i_min];
      bk2 = (i_min < i_max - 1) ? c * b_ptr[i_min + 1] : 0.0;
      z = (i_min < i_max - 1) ? -s * b_ptr[i_min + 1] : 0.0;
      a_ptr[i_min] = ak1;
      a_ptr[i_min + 1] = ak2;
      b_ptr[i_min] = bk1;
      if (i_min < i_max - 1)
	b_ptr[i_min + 1] = bk2;
      if (mat_q)
	mx_rot_cols(mat_q, i_min, i_min + 1, c, -s, mat_q);

      for (int i = i_min + 1; i < i_max; i++)
      {
	/* get Givens' rotation for sub-block -- k == i-1 */
	mx_givens(b_ptr[i - 1], z, &c, &s);
	s = -s;

	/* perform Givens' rotation on sub-block */
	if (fabs(c) < SQRT2)
	{
	  c2 = c * c;
	  s2 = 1 - c2;
	}
	else
	{
	  s2 = s * s;
	  c2 = 1 - s2;
	}
	cs = c * s;
	bk = c * b_ptr[i - 1] - s * z;
	ak1 = c2 * a_ptr[i] + s2 * a_ptr[i + 1] - 2 * cs * b_ptr[i];
	bk1 = cs * (a_ptr[i] - a_ptr[i + 1]) + (c2 - s2) * b_ptr[i];
	ak2 = s2 * a_ptr[i] + c2 * a_ptr[i + 1] + 2 * cs * b_ptr[i];
	bk2 = (i + 1 < i_max) ? c * b_ptr[i + 1] : 0.0;
	z = (i + 1 < i_max) ? -s * b_ptr[i + 1] : 0.0;
	a_ptr[i] = ak1;
	a_ptr[i + 1] = ak2;
	b_ptr[i] = bk1;
	if (i < i_max - 1)
	  b_ptr[i + 1] = bk2;
	if (i > i_min)
	  b_ptr[i - 1] = bk;
	if (mat_q)
	  mx_rot_cols(mat_q, i, i + 1, c, -s, mat_q);
      }

      /* test to see if matrix should be split */
      for (int i = i_min; i < i_max; i++)
      {
	if (fabs(b_ptr[i]) <
	    REAL_EPSILON * (fabs(a_ptr[i]) + fabs(a_ptr[i + 1])))
	{
	  b_ptr[i] = 0.0;
	  split = true;
	}
      }
    }
  }
}

/* symmeig -- computes eigenvalues of a dense symmetric matrix
	-- mat_a **must** be symmetric on entry
	-- eigenvalues stored in out
	-- mat_q contains orthogonal matrix of eigenvectors
	-- returns vector of eigenvalues
  -- je pense: if mat_q is NULL, eigenvectors won't be computed
*/
void mxSymEig(Mat * mat_a, Mat * mat_q, Vec * out)
{
  Mat *tmp = new Mat(mat_a->m, mat_a->n);
  tmp->copy(mat_a);

  Vec *b = new Vec(mat_a->m - 1);
  Vec *diag = new Vec(mat_a->m);
  Vec *beta = new Vec(mat_a->m);

  mxHFactor(tmp, diag, beta);
  if (mat_q)
    mxMakeHQ(tmp, diag, beta, mat_q);

  int i;
  for (i = 0; i < mat_a->m - 1; i++)
  {
    out->ptr[i] = tmp->ptr[i][i];
    b->ptr[i] = tmp->ptr[i][i + 1];
  }
  out->ptr[i] = tmp->ptr[i][i];

  mxTriEig(out, b, mat_q);

  delete beta;
  delete diag;
  delete b;
  delete tmp;
}

}