File: TemporalSubSampling.cc

package info (click to toggle)
torch3 3.1-0
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 2,940 kB
  • ctags: 2,744
  • sloc: cpp: 24,245; python: 299; makefile: 153
file content (161 lines) | stat: -rw-r--r-- 4,728 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
// Copyright (C) 2003--2004 Ronan Collobert (collober@idiap.ch)
//                
// This file is part of Torch 3.1.
//
// All rights reserved.
// 
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// 1. Redistributions of source code must retain the above copyright
//    notice, this list of conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright
//    notice, this list of conditions and the following disclaimer in the
//    documentation and/or other materials provided with the distribution.
// 3. The name of the author may not be used to endorse or promote products
//    derived from this software without specific prior written permission.
// 
// THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
// IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
// OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
// IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
// NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
// THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include "TemporalSubSampling.h"
#include "Random.h"

namespace Torch {

TemporalSubSampling::TemporalSubSampling(int input_frame_size, int k_w_, int d_t_)
  : GradientMachine(input_frame_size, input_frame_size, 2*input_frame_size)
{
  k_w = k_w_;
  d_t = d_t_;

  weights = params->data[0];
  biases = params->data[0] + n_inputs;

  der_weights = der_params->data[0];
  der_biases = der_params->data[0] + n_inputs;

  reset_();
}

void TemporalSubSampling::reset_()
{
  real bound = 1./sqrt((real)(k_w));

  real *params_ = params->data[0];
  for(int i = 0; i < params->n_params; i++)
    params_[i] = Random::boundedUniform(-bound, bound);
}

void TemporalSubSampling::reset()
{
  reset_();
}

void TemporalSubSampling::forward(Sequence *inputs)
{
  if(inputs->n_frames < k_w)
    error("TemporalSubSampling: input sequence too small! (n_frames = %d < k_w = %d)", inputs->n_frames, k_w);

  int n_output_frames = (inputs->n_frames - k_w) / d_t + 1;
  outputs->resize(n_output_frames);

  int current_input_frame = 0;
  for(int i = 0; i < n_output_frames; i++)
  {
    real *output_frame_ = outputs->frames[i];
    for(int j = 0; j < n_outputs; j++)
      output_frame_[j] = biases[j];

    // Sur le noyau...
    for(int j = 0; j < k_w; j++)
    {
      // Sur tous les "neurones" de sorties
      for(int k = 0; k < n_outputs; k++)
      {
        real *input_frame_ = inputs->frames[current_input_frame+j];

        real sum = 0;
        for(int l = 0; l < n_inputs; l++)
          sum += input_frame_[l];

        output_frame_[k] += weights[k]*sum;
      }
    }
    current_input_frame += d_t;
  }
}

void TemporalSubSampling::backward(Sequence *inputs, Sequence *alpha)
{
  int n_output_frames = alpha->n_frames;

  // NOTE: boucle *necessaire* avec "partial backprop"

  int current_input_frame = 0;
  for(int i = 0; i < n_output_frames; i++)
  {
    real *alpha_frame_ = alpha->frames[i];
    for(int j = 0; j < n_outputs; j++)
      der_biases[j] += alpha_frame_[j];
    
    for(int j = 0; j < k_w; j++)
    {
      for(int k = 0; k < n_outputs; k++)
      {
        real *input_frame_ = inputs->frames[current_input_frame+j];

        real alpha_ = alpha_frame_[k];
        real sum = 0;
        for(int l = 0; l < n_inputs; l++)
          sum += alpha_*input_frame_[l];
        der_weights[k] += sum;
      }
    }
    current_input_frame += d_t;
  }

  if(partial_backprop)
    return;

  // NOTE: boucle *non-necessaire* avec "partial backprop"

  beta->resize(inputs->n_frames);
  for(int i = 0; i < beta->n_frames; i++)
  {
    real *beta_frame_ = beta->frames[i];
    for(int j = 0; j < n_inputs; j++)
      beta_frame_[j] = 0;
  }

  int current_beta_frame = 0;
  for(int i = 0; i < n_output_frames; i++)
  {
    real *alpha_frame_ = alpha->frames[i];
    for(int j = 0; j < k_w; j++)
    {
      for(int k = 0; k < n_outputs; k++)
      {
        real *beta_frame_ = beta->frames[current_beta_frame+j];
        real alpha_mul_weight_ = alpha_frame_[k]*weights[k];
        for(int l = 0; l < n_inputs; l++)
           beta_frame_[l] += alpha_mul_weight_;
      }
    }
    current_beta_frame += d_t;
  }
}

TemporalSubSampling::~TemporalSubSampling()
{
}

}