File: knn.cc

package info (click to toggle)
torch3 3.1-0
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 2,940 kB
  • ctags: 2,744
  • sloc: cpp: 24,245; python: 299; makefile: 153
file content (210 lines) | stat: -rw-r--r-- 6,070 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
const char *help = "\
KNNTorch III (c) Trebolloc & Co 2002\n\
\n\
This program will train a KNN.\n";

#include <torch/MatDataSet.h>
#include <torch/ClassFormatDataSet.h>
#include <torch/ClassNLLCriterion.h>
#include <torch/MSECriterion.h>
#include <torch/OneHotClassFormat.h>
#include <torch/ClassMeasurer.h>
#include <torch/MSEMeasurer.h>

#include <torch/NPTrainer.h>
#include <torch/KFold.h>
#include <torch/KNN.h>

#include <torch/MeanVarNorm.h>
#include <torch/CmdLine.h>
#include <torch/Random.h>

using namespace Torch;

int main(int argc, char **argv)
{
  char *file;
  char *test_file;

  int n_inputs;
  int n_targets;

  int max_load;
  int test_max_load;

  char *dir_name;
  int k_fold;
  bool binary_mode;
  bool regression_mode;
  bool normalize;
  int k_n;

  Allocator *allocator = new Allocator;

  //=================== The command-line ==========================

  // Construct the command line
  CmdLine cmd;

  // Put the help line at the beginning
  cmd.info(help);

  // Train mode
  cmd.addText("\nArguments:");
  cmd.addSCmdArg("file", &file, "the 'train' file");
  cmd.addICmdArg("n_inputs", &n_inputs, "input dimension of the data");
  cmd.addICmdArg("n_targets", &n_targets, "output dimension of the data or # of classes");

  cmd.addText("\nModel Options:");
  cmd.addICmdOption("-K", &k_n, 3, "number of neighboors");
  cmd.addBCmdOption("-rm", &regression_mode, false, "regression mode ?");

  cmd.addText("\nLearning Options:");
  cmd.addBCmdOption("-norm", &normalize, false, "want to normalize data ?");

  cmd.addText("\nMisc Options:");
  cmd.addICmdOption("-kfold", &k_fold, -1, "number of folds, if you want to do cross-validation");
  cmd.addICmdOption("-load", &max_load, -1, "max number of examples to load for train");
  cmd.addICmdOption("-load_valid", &test_max_load, -1, "max number of examples to load for test");
  cmd.addSCmdOption("-dir", &dir_name, ".", "directory to save measures");
  cmd.addBCmdOption("-bin", &binary_mode, false, "binary mode for files");

  // Test mode
  cmd.addMasterSwitch("--test");
  cmd.addText("\nArguments:");
  cmd.addSCmdArg("file", &file, "the 'train' file");
  cmd.addSCmdArg("test file", &test_file, "the test file");
  cmd.addICmdArg("n_inputs", &n_inputs, "input dimension of the data");
  cmd.addICmdArg("n_targets", &n_targets, "output dimension of the data or # of classes");

  cmd.addText("\nModel Options:");
  cmd.addICmdOption("-K", &k_n, 3, "number of neighboors");
  cmd.addBCmdOption("-rm", &regression_mode, false, "regression mode ?");

  cmd.addText("\nLearning Options:");
  cmd.addBCmdOption("-norm", &normalize, false, "want to normalize data ?");

  cmd.addText("\nMisc Options:");
  cmd.addICmdOption("-load", &max_load, -1, "max number of examples to load for train");
  cmd.addICmdOption("-load_test", &test_max_load, -1, "max number of examples to load for test");
  cmd.addSCmdOption("-dir", &dir_name, ".", "directory to save measures");
  cmd.addBCmdOption("-bin", &binary_mode, false, "binary mode for files");

  // Read the command line
  int mode = cmd.read(argc, argv);

  cmd.setWorkingDirectory(dir_name);

  //=================== DataSets... ===============================

  // 'Train'
  DataSet *data = NULL;
  MeanVarNorm *mv_norm = NULL;
  if(regression_mode)
  {
    data = new(allocator) MatDataSet(file, n_inputs, n_targets, false, max_load, binary_mode);
    if(normalize)
    {
      mv_norm = new(allocator) MeanVarNorm(data);
      data->preProcess(mv_norm);
    }
  }
  else
  {
    MatDataSet *mat_data = new(allocator) MatDataSet(file, n_inputs, 1, false, max_load, binary_mode);
    if(normalize)
    {
      mv_norm = new(allocator) MeanVarNorm(mat_data);
      mat_data->preProcess(mv_norm);
    }
    data = new(allocator) ClassFormatDataSet(mat_data, n_targets);
  }

  // 'Test'
  DataSet *test_data = NULL;
  if(mode == 1)
  {
    if(regression_mode)
    {
      test_data = new(allocator) MatDataSet(test_file, n_inputs, n_targets, false, test_max_load, binary_mode);
      if(normalize)
        data->preProcess(mv_norm);
    }
    else
    {
      MatDataSet *test_mat_data = new(allocator) MatDataSet(test_file, n_inputs, 1, false, test_max_load, binary_mode);
      if(normalize)
        test_mat_data->preProcess(mv_norm);
      test_data = new(allocator) ClassFormatDataSet(test_mat_data, n_targets);
    }
  }

  //=================== The beast... ==============================
  
  KNN knn(n_targets, k_n);

  //=================== Measurers... ==============================

  // The list of measurers...
  MeasurerList measurers;

  // The class format
  OneHotClassFormat *class_format = NULL;
  if(!regression_mode)
    class_format = new(allocator) OneHotClassFormat(n_targets);

  // Measurers on the training dataset
  if(regression_mode)
  {
    MSEMeasurer *mse_meas = new(allocator) MSEMeasurer(knn.outputs, data, cmd.getXFile("the_mse_err"));
    measurers.addNode(mse_meas);
  }
  else
  {
    ClassMeasurer *class_meas = new(allocator) ClassMeasurer(knn.outputs, data, class_format, cmd.getXFile("the_class_err"));
    measurers.addNode(class_meas);
  }

  // Measurers on the test dataset
  if(mode == 1)
  {
    if(regression_mode)
    {
      MSEMeasurer *mse_meas = new(allocator) MSEMeasurer(knn.outputs, test_data, cmd.getXFile("the_test_mse_err"));
      measurers.addNode(mse_meas);
    }
    else
    {
      ClassMeasurer *class_meas = new(allocator) ClassMeasurer(knn.outputs, test_data, class_format, cmd.getXFile("the_test_class_err"));
      measurers.addNode(class_meas);
    }
  }
  
  //=================== The Trainer ===============================
  
  NPTrainer trainer(&knn);

  //=================== Let's go... ===============================

  if(mode == 0)
  {
    if(k_fold <= 0)
    {
      trainer.train(data, NULL);
      trainer.test(&measurers);
    }
    else
    {
      KFold k(&trainer, k_fold);
      k.crossValidate(data, NULL, &measurers);
    }
  }
  else
  {
    trainer.train(data, NULL);
    trainer.test(&measurers);
  }

  delete allocator;
  return(0);
}