1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
|
const char *help = "\
MLPTorch III (c) Trebolloc & Co 2003\n\
\n\
This program will train a MLP with log-softmax outputs\n\
for classification and linear outputs for regression.\n\
For classification, the criterion will be a cross-entropy criterion.\n\
For regression, it uses a mean-squared error criterion.\n";
#include <torch/MatDataSet.h>
#include <torch/ClassFormatDataSet.h>
#include <torch/ClassNLLCriterion.h>
#include <torch/MSECriterion.h>
#include <torch/OneHotClassFormat.h>
#include <torch/ClassMeasurer.h>
#include <torch/MSEMeasurer.h>
#include <torch/StochasticGradient.h>
#include <torch/KFold.h>
#include <torch/ConnectedMachine.h>
#include <torch/Linear.h>
#include <torch/Tanh.h>
#include <torch/LogSoftMax.h>
#include <torch/MeanVarNorm.h>
#include <torch/DiskXFile.h>
#include <torch/CmdLine.h>
#include <torch/Random.h>
using namespace Torch;
int main(int argc, char **argv)
{
char *valid_file;
char *file;
int n_inputs;
int n_targets;
int n_hu;
int max_load;
int max_load_valid;
real accuracy;
real learning_rate;
real decay;
int max_iter;
int the_seed;
char *dir_name;
char *model_file;
int k_fold;
bool binary_mode;
real weight_decay;
bool regression_mode;
int class_against_the_others;
int n_outputs;
Allocator *allocator = new Allocator;
DiskXFile::setLittleEndianMode();
//=================== The command-line ==========================
// Construct the command line
CmdLine cmd;
// Put the help line at the beginning
cmd.info(help);
// Train mode
cmd.addText("\nArguments:");
cmd.addSCmdArg("file", &file, "the train file");
cmd.addICmdArg("n_inputs", &n_inputs, "input dimension of the data", true);
cmd.addICmdArg("n_targets", &n_targets, "output dim. (regression) or # of classes (classification)", true);
cmd.addText("\nModel Options:");
cmd.addICmdOption("-class", &class_against_the_others, -1, "train the given class against the others", true);
cmd.addICmdOption("-nhu", &n_hu, 25, "number of hidden units", true);
cmd.addBCmdOption("-rm", ®ression_mode, false, "regression mode ?", true);
cmd.addText("\nLearning Options:");
cmd.addICmdOption("-iter", &max_iter, 25, "max number of iterations");
cmd.addRCmdOption("-lr", &learning_rate, 0.01, "learning rate");
cmd.addRCmdOption("-e", &accuracy, 0.00001, "end accuracy");
cmd.addRCmdOption("-lrd", &decay, 0, "learning rate decay");
cmd.addICmdOption("-kfold", &k_fold, -1, "number of folds, if you want to do cross-validation");
cmd.addRCmdOption("-wd", &weight_decay, 0, "weight decay", true);
cmd.addText("\nMisc Options:");
cmd.addICmdOption("-seed", &the_seed, -1, "the random seed");
cmd.addICmdOption("-load", &max_load, -1, "max number of examples to load for train");
cmd.addICmdOption("-load_valid", &max_load_valid, -1, "max number of examples to load for valid");
cmd.addSCmdOption("-valid", &valid_file, "", "validation file, if you want it");
cmd.addSCmdOption("-dir", &dir_name, ".", "directory to save measures");
cmd.addSCmdOption("-save", &model_file, "", "the model file");
cmd.addBCmdOption("-bin", &binary_mode, false, "binary mode for files");
// Test mode
cmd.addMasterSwitch("--test");
cmd.addText("\nArguments:");
cmd.addSCmdArg("model", &model_file, "the model file");
cmd.addSCmdArg("file", &file, "the test file");
cmd.addText("\nMisc Options:");
cmd.addICmdOption("-load", &max_load, -1, "max number of examples to load for train");
cmd.addSCmdOption("-dir", &dir_name, ".", "directory to save measures");
cmd.addBCmdOption("-bin", &binary_mode, false, "binary mode for files");
// Read the command line
int mode = cmd.read(argc, argv);
DiskXFile *model = NULL;
if(mode == 1)
{
model = new(allocator) DiskXFile(model_file, "r");
cmd.loadXFile(model);
}
// If the user didn't give any random seed,
// generate a random random seed...
if(mode == 0)
{
if(the_seed == -1)
Random::seed();
else
Random::manualSeed((long)the_seed);
}
cmd.setWorkingDirectory(dir_name);
if( (class_against_the_others >= 0) && (!regression_mode) )
n_outputs = 2;
else
n_outputs = n_targets;
//=================== Create the MLP... =========================
ConnectedMachine mlp;
if(n_hu > 0)
{
Linear *c1 = new(allocator) Linear(n_inputs, n_hu);
c1->setROption("weight decay", weight_decay);
Tanh *c2 = new(allocator) Tanh(n_hu);
Linear *c3 = new(allocator) Linear(n_hu, n_outputs);
c3->setROption("weight decay", weight_decay);
mlp.addFCL(c1);
mlp.addFCL(c2);
mlp.addFCL(c3);
if(!regression_mode)
{
LogSoftMax *c4 = new(allocator) LogSoftMax(n_outputs);
mlp.addFCL(c4);
}
}
else
{
Linear *c1 = new(allocator) Linear(n_inputs, n_outputs);
c1->setROption("weight decay", weight_decay);
mlp.addFCL(c1);
if(!regression_mode)
{
LogSoftMax *c2 = new(allocator) LogSoftMax(n_outputs);
mlp.addFCL(c2);
}
}
// Initialize the MLP
mlp.build();
mlp.setPartialBackprop();
//=================== DataSets & Measurers... ===================
// Create the training dataset (normalize inputs)
DataSet *data = NULL;
MeanVarNorm *mv_norm = NULL;
Sequence *class_labels = NULL;
if(regression_mode)
{
data = new(allocator) MatDataSet(file, n_inputs, n_targets, false, max_load, binary_mode);
mv_norm = new(allocator) MeanVarNorm(data);
if(mode == 1)
mv_norm->loadXFile(model);
data->preProcess(mv_norm);
}
else
{
MatDataSet *mat_data = new(allocator) MatDataSet(file, n_inputs, 1, false, max_load, binary_mode);
mv_norm = new(allocator) MeanVarNorm(mat_data);
if(mode == 1)
mv_norm->loadXFile(model);
mat_data->preProcess(mv_norm);
if(class_against_the_others >= 0)
{
class_labels = new(allocator) Sequence(n_targets, n_outputs);
for(int i = 0; i < n_targets; i++)
{
if(i == class_against_the_others)
{
class_labels->frames[i][0] = 1;
class_labels->frames[i][1] = 0;
}
else
{
class_labels->frames[i][0] = 0;
class_labels->frames[i][1] = 1;
}
}
message("Training/Testing class %d against the others", class_against_the_others);
data = new(allocator) ClassFormatDataSet(mat_data, class_labels);
}
else
data = new(allocator) ClassFormatDataSet(mat_data, n_targets);
}
if(mode == 1)
mlp.loadXFile(model);
// The list of measurers...
MeasurerList measurers;
// The class format
OneHotClassFormat *class_format = NULL;
if(!regression_mode)
class_format = new(allocator) OneHotClassFormat(n_outputs);
// The validation set...
if(mode == 0)
{
// Create a validation set, if any
if(strcmp(valid_file, ""))
{
// Load the validation set and normalize it with the
// values in the train dataset
DataSet *valid_data = NULL;
if(regression_mode)
{
valid_data = new(allocator) MatDataSet(valid_file, n_inputs, n_targets, false, max_load_valid, binary_mode);
valid_data->preProcess(mv_norm);
}
else
{
MatDataSet *valid_mat_data = new(allocator) MatDataSet(valid_file, n_inputs, 1, false, max_load_valid, binary_mode);
valid_mat_data->preProcess(mv_norm);
if(class_against_the_others >= 0)
valid_data = new(allocator) ClassFormatDataSet(valid_mat_data, class_labels);
else
valid_data = new(allocator) ClassFormatDataSet(valid_mat_data, n_targets);
}
if(regression_mode)
{
MSEMeasurer *valid_mse_meas = new(allocator) MSEMeasurer(mlp.outputs, valid_data, cmd.getXFile("the_valid_mse_err"));
measurers.addNode(valid_mse_meas);
}
else
{
ClassMeasurer *valid_class_meas = new(allocator) ClassMeasurer(mlp.outputs, valid_data, class_format, cmd.getXFile("the_valid_class_err"));
measurers.addNode(valid_class_meas);
}
}
}
// Measurers on the training dataset
if(regression_mode)
{
MSEMeasurer *mse_meas = new(allocator) MSEMeasurer(mlp.outputs, data, cmd.getXFile("the_mse_err"));
measurers.addNode(mse_meas);
}
else
{
ClassMeasurer *class_meas = new(allocator) ClassMeasurer(mlp.outputs, data, class_format, cmd.getXFile("the_class_err"));
measurers.addNode(class_meas);
}
//=================== The Trainer ===============================
// The criterion for the StochasticGradient (MSE criterion or NLL criterion)
Criterion *criterion = NULL;
if(regression_mode)
criterion = new(allocator) MSECriterion(n_outputs);
else
criterion = new(allocator) ClassNLLCriterion(class_format);
// The Gradient Machine Trainer
StochasticGradient trainer(&mlp, criterion);
if(mode == 0)
{
trainer.setIOption("max iter", max_iter);
trainer.setROption("end accuracy", accuracy);
trainer.setROption("learning rate", learning_rate);
trainer.setROption("learning rate decay", decay);
}
//=================== Let's go... ===============================
// Print the number of parameter of the MLP (just for fun)
message("Number of parameters: %d", mlp.params->n_params);
if(mode == 0)
{
if(k_fold <= 0)
{
trainer.train(data, &measurers);
if(strcmp(model_file, ""))
{
DiskXFile model_(model_file, "w");
cmd.saveXFile(&model_);
mv_norm->saveXFile(&model_);
mlp.saveXFile(&model_);
}
}
else
{
KFold k(&trainer, k_fold);
k.crossValidate(data, NULL, &measurers);
}
}
else
trainer.test(&measurers);
delete allocator;
return(0);
}
|