1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
|
const char *help = "\
GMM (c) Samy Bengio & Co 2001\n\
\n\
This program will maximize the likelihood of data given a Diagonal GMM \n";
#include <torch/EMTrainer.h>
#include <torch/HMM.h>
#include <torch/KFold.h>
#include <torch/KMeans.h>
#include <torch/HTKDataSet.h>
#include <torch/MatDataSet.h>
#include <torch/CmdLine.h>
#include <torch/NLLMeasurer.h>
#include <torch/Random.h>
#include <torch/FileListCmdOption.h>
#include <unistd.h>
using namespace Torch;
// create a vector of variance flooring
void initializeThreshold(DataSet* data,real* thresh, real threshold);
//create the transitions probabilities matrix
void setTransitions(real** transistions, int n_states, bool left_right);
int main(int argc, char **argv)
{
int n_gaussians;
int n_states;
bool left_right;
real accuracy;
real threshold;
int max_iter_kmeans;
int max_iter_hmm;
real prior;
int max_load;
int the_seed;
char *dir_name;
char *model_file;
char *save_model_file;
int k_fold;
bool binary_mode;
Allocator *allocator = new Allocator;
FileListCmdOption file_list("file name", "the list files or one data file");
file_list.isArgument(true);
//===============================================================
//=================== The command-line ==========================
//===============================================================
// Construct the command line
CmdLine cmd;
// Put the help line at the beginning
cmd.info(help);
// Train mode
cmd.addText("\nArguments:");
cmd.addCmdOption(&file_list);
cmd.addText("\nModel Options:");
cmd.addICmdOption("-n_gaussians", &n_gaussians, 10, "number of Gaussians");
cmd.addICmdOption("-n_states", &n_states, 5, "number of states");
cmd.addBCmdOption("-left_right", &left_right, false, "left-right connectivity (otherwise: full-connect)");
cmd.addText("\nLearning Options:");
cmd.addRCmdOption("-threshold", &threshold, 0.001, "variance threshold");
cmd.addRCmdOption("-prior", &prior, 0.001, "prior on the weights");
cmd.addICmdOption("-iterk", &max_iter_kmeans, 25, "max number of iterations of KMeans");
cmd.addICmdOption("-iterh", &max_iter_hmm, 25, "max number of iterations of HMM");
cmd.addRCmdOption("-e", &accuracy, 0.00001, "end accuracy");
cmd.addICmdOption("-kfold", &k_fold, -1, "number of folds, if you want to do cross-validation");
cmd.addText("\nMisc Options:");
cmd.addICmdOption("-seed", &the_seed, -1, "the random seed");
cmd.addICmdOption("-load", &max_load, -1, "max number of examples to load for train");
cmd.addSCmdOption("-dir", &dir_name, ".", "directory to save measures");
cmd.addSCmdOption("-save", &save_model_file, "", "the model file");
cmd.addBCmdOption("-bin", &binary_mode, false, "binary mode for files");
// Retrain mode
cmd.addMasterSwitch("--retrain");
cmd.addText("\nArguments:");
cmd.addSCmdArg("model", &model_file, "the model file");
cmd.addCmdOption(&file_list);
cmd.addRCmdOption("-threshold", &threshold, 0.001, "variance threshold");
cmd.addRCmdOption("-prior", &prior, 0.001, "prior on the weights");
cmd.addICmdOption("-iterh", &max_iter_hmm, 25, "max number of iterations of HMM");
cmd.addRCmdOption("-e", &accuracy, 0.00001, "end accuracy");
cmd.addText("\nMisc Options:");
cmd.addICmdOption("-load", &max_load, -1, "max number of examples to load for train");
cmd.addSCmdOption("-dir", &dir_name, ".", "directory to save measures");
cmd.addSCmdOption("-save", &save_model_file, "", "the model file");
cmd.addBCmdOption("-bin", &binary_mode, false, "binary mode for files");
// Test mode
cmd.addMasterSwitch("--test");
cmd.addText("\nArguments:");
cmd.addSCmdArg("model", &model_file, "the model file");
cmd.addCmdOption(&file_list);
cmd.addText("\nMisc Options:");
cmd.addICmdOption("-load", &max_load, -1, "max number of examples to load for train");
cmd.addSCmdOption("-dir", &dir_name, ".", "directory to save measures");
cmd.addBCmdOption("-bin", &binary_mode, false, "binary mode for files");
// Read the command line
int mode = cmd.read(argc, argv);
cmd.setWorkingDirectory(dir_name);
//DiskXFile::setBigEndianMode();
//====================================================================
//=================== Create the DataSet ... =========================
//====================================================================
//MatDataSet data(file, -1, 0, true, max_load);
MatDataSet data(file_list.file_names, file_list.n_files, -1,0,true, max_load, binary_mode);
//HTKDataSet data(files, NULL, n_files, true, max_load);
message("data loaded\n");
//====================================================================
//=================== Training Mode =================================
//====================================================================
if(mode == 0)
{
if (the_seed == -1)
Random::seed();
else
Random::manualSeed((long)the_seed);
//=================== Create the HMM... =========================
// create a KMeans object to initialize the GMM
KMeans kmeans(data.n_inputs, n_gaussians);
// the kmeans trainer
EMTrainer kmeans_trainer(&kmeans);
kmeans_trainer.setROption("end accuracy", accuracy);
kmeans_trainer.setIOption("max iter", max_iter_kmeans);
real* thresh = (real*)allocator->alloc(data.n_inputs*sizeof(real));
initializeThreshold(&data,thresh,threshold);
// create the GMM
DiagonalGMM** gmms = (DiagonalGMM **)allocator->alloc(sizeof(DiagonalGMM*)*n_states);
for (int i=1;i<n_states-1;i++) {
DiagonalGMM* gmm = new(allocator)DiagonalGMM(data.n_inputs,n_gaussians,&kmeans_trainer);
// set the training options
gmm->setVarThreshold(thresh);
gmm->setROption("prior weights",prior);
gmms[i] = gmm;
}
// note that HMMs have two non-emitting states: the initial and final states
gmms[0] = NULL;
gmms[n_states-1] = NULL;
// we create the transition matrix with initial transition probabilities
real** transitions = (real**)allocator->alloc(n_states*sizeof(real*));
for (int i=0;i<n_states;i++) {
transitions[i] = (real*)allocator->alloc(n_states*sizeof(real));
}
// ... the left_right transition matrix
setTransitions(transitions, n_states, left_right);
HMM hmm(n_states, (Distribution**)gmms, transitions);
hmm.setROption("prior transitions",prior);
hmm.setBOption("linear segmentation", left_right);
//=================== Measurers and Trainer ===============================
// Measurers on the training dataset
MeasurerList measurers;
NLLMeasurer nll_meas(hmm.log_probabilities, &data, cmd.getXFile("hmm_train_val"));
measurers.addNode(&nll_meas);
// The Gradient Machine Trainer
EMTrainer trainer(&hmm);
trainer.setIOption("max iter", max_iter_hmm);
trainer.setROption("end accuracy", accuracy);
trainer.setBOption("viterbi",true);
//=================== Let's go... ===============================
if(k_fold <= 0)
{
trainer.train(&data, &measurers);
if(strcmp(save_model_file, ""))
{
DiskXFile model_(save_model_file, "w");
cmd.saveXFile(&model_);
model_.taggedWrite(&n_states, sizeof(int), 1, "n_states");
model_.taggedWrite(&n_gaussians, sizeof(int), 1, "n_gaussians");
bool l_r = (int) left_right;
model_.taggedWrite(&l_r, sizeof(int), 1, "left_right");
hmm.saveXFile(&model_);
}
}
else
{
KFold k(&trainer, k_fold);
k.crossValidate(&data, NULL, &measurers);
}
}
//====================================================================
//=================== Retraining Mode ===============================
//====================================================================
if(mode == 1){
bool l_r;
DiskXFile model(model_file, "r");
cmd.loadXFile(&model);
model.taggedRead(&n_states, sizeof(int), 1, "n_states");
model.taggedRead(&n_gaussians, sizeof(int), 1, "n_gaussians");
model.taggedRead(&l_r, sizeof(int), 1, "left_right");
left_right = (bool) l_r;
real* thresh = (real*)allocator->alloc(data.n_inputs*sizeof(real));
initializeThreshold(&data,thresh,threshold);
// create the GMM
DiagonalGMM** gmms = (DiagonalGMM **)allocator->alloc(sizeof(DiagonalGMM*)*n_states);
for (int i=1;i<n_states-1;i++) {
DiagonalGMM* gmm = new(allocator)DiagonalGMM(data.n_inputs,n_gaussians);
// set the training options
gmm->setVarThreshold(thresh);
gmm->setROption("prior weights",prior);
gmms[i] = gmm;
}
// note that HMMs have two non-emitting states: the initial and final states
gmms[0] = NULL;
gmms[n_states-1] = NULL;
// we create the transition matrix with initial transition probabilities
real** transitions = (real**)allocator->alloc(n_states*sizeof(real*));
for (int i=0;i<n_states;i++) {
transitions[i] = (real*)allocator->alloc(n_states*sizeof(real));
}
// ... the left_right transition matrix
setTransitions(transitions, n_states, left_right);
HMM hmm(n_states, (Distribution**)gmms, transitions);
hmm.setROption("prior transitions",prior);
hmm.loadXFile(&model);
//=================== Measurers and Trainer ===============================
// Measurers on the training dataset
MeasurerList measurers;
NLLMeasurer nll_meas(hmm.log_probabilities, &data, cmd.getXFile("hmm_retrain_val"));
measurers.addNode(&nll_meas);
// The Gradient Machine Trainer
EMTrainer trainer(&hmm);
trainer.setIOption("max iter", max_iter_hmm);
trainer.setROption("end accuracy", accuracy);
//=================== Let's go... ===============================
trainer.train(&data, &measurers);
if(strcmp(save_model_file, ""))
{
DiskXFile model_(save_model_file, "w");
cmd.saveXFile(&model_);
model_.taggedWrite(&n_states, sizeof(int), 1, "n_states");
model_.taggedWrite(&n_gaussians, sizeof(int), 1, "n_gaussians");
bool l_r = (int) left_right;
model_.taggedWrite(&l_r, sizeof(int), 1, "left_right");
hmm.saveXFile(&model_);
}
}
//====================================================================
//====================== Testing Mode ===============================
//====================================================================
if(mode == 2){
bool l_r;
DiskXFile model(model_file, "r");
cmd.loadXFile(&model);
model.taggedRead(&n_states, sizeof(int), 1, "n_states");
model.taggedRead(&n_gaussians, sizeof(int), 1, "n_gaussians");
model.taggedRead(&l_r, sizeof(int), 1, "left_right");
left_right = (bool) l_r;
// create the GMM
DiagonalGMM** gmms = (DiagonalGMM **)allocator->alloc(sizeof(DiagonalGMM*)*n_states);
for (int i=1;i<n_states-1;i++) {
DiagonalGMM* gmm = new(allocator)DiagonalGMM(data.n_inputs,n_gaussians);
// set the training options
gmms[i] = gmm;
}
// note that HMMs have two non-emitting states: the initial and final states
gmms[0] = NULL;
gmms[n_states-1] = NULL;
// we create the transition matrix with initial transition probabilities
real** transitions = (real**)allocator->alloc(n_states*sizeof(real*));
for (int i=0;i<n_states;i++) {
transitions[i] = (real*)allocator->alloc(n_states*sizeof(real));
}
// ... the left_right transition matrix
setTransitions(transitions, n_states, left_right);
HMM hmm(n_states, (Distribution**)gmms, transitions);
hmm.setROption("prior transitions",prior);
hmm.loadXFile(&model);
//=================== Measurers and Trainer ===============================
// Measurers on the training dataset
MeasurerList measurers;
NLLMeasurer nll_meas(hmm.log_probabilities, &data, cmd.getXFile("hmm_test_val"));
measurers.addNode(&nll_meas);
// The Gradient Machine Trainer
EMTrainer trainer(&hmm);
//=================== Let's go... ===============================
trainer.test(&measurers);
}
delete allocator;
return(0);
}
void setTransitions(real** transitions, int n_states, bool left_right){
for (int i=0;i<n_states;i++) {
for (int j=0;j<n_states;j++)
transitions[i][j] = 0;
}
if (left_right) {
transitions[1][0] = 1;
for (int i=1;i<n_states-1;i++) {
transitions[i][i] = 0.5;
transitions[i+1][i] = 0.5;
}
} else {
// ... the full_connect transition matrix
for (int i=1;i<n_states-1;i++) {
transitions[i][0] = 1./(n_states-2);
for (int j=1;j<n_states;j++) {
transitions[j][i] = 1./(n_states-1);
}
}
}
}
void initializeThreshold(DataSet* data,real* thresh, real threshold)
{
MeanVarNorm norm(data);
real* ptr = norm.inputs_stdv;
real* p_var = thresh;
for(int i=0;i<data->n_inputs;i++)
*p_var++ = *ptr * *ptr++ * threshold;
}
|