1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
|
const char *help = "\
BoostingTorch III (c) Trebolloc & Co 2002\n\
\n\
This program will boost a MLP (for classification) with log-softmax outputs.\n";
#include <torch/MatDataSet.h>
#include <torch/ClassFormatDataSet.h>
#include <torch/ClassNLLCriterion.h>
#include <torch/OneHotClassFormat.h>
#include <torch/ClassMeasurer.h>
#include <torch/StochasticGradient.h>
#include <torch/KFold.h>
#include <torch/MeanVarNorm.h>
#include <torch/DiskXFile.h>
#include <torch/CmdLine.h>
#include <torch/Random.h>
#include <torch/MLP.h>
#include <torch/WeightedSumMachine.h>
#include <torch/Boosting.h>
using namespace Torch;
int main(int argc, char **argv)
{
char *valid_file;
char *file;
int n_inputs;
int n_targets;
int n_hu;
int max_load;
int max_load_valid;
real accuracy;
real learning_rate;
real decay;
int max_iter;
int the_seed;
char *dir_name;
char *model_file;
int k_fold;
bool binary_mode;
real weight_decay;
int n_trainers;
Allocator *allocator = new Allocator;
DiskXFile::setLittleEndianMode();
//=================== The command-line ==========================
// Construct the command line
CmdLine cmd;
// Put the help line at the beginning
cmd.info(help);
// Train mode
cmd.addText("\nArguments:");
cmd.addSCmdArg("file", &file, "the train file");
cmd.addICmdArg("n_inputs", &n_inputs, "input dimension of the data", true);
cmd.addICmdArg("n_targets", &n_targets, "output dimension of the data or # of classes", true);
cmd.addText("\nModel Options:");
cmd.addICmdOption("-nhu", &n_hu, 25, "number of hidden units", true);
cmd.addICmdOption("-n", &n_trainers, 25, "maximum number of boosting step", true);
cmd.addText("\nLearning Options:");
cmd.addICmdOption("-iter", &max_iter, 25, "max number of iterations");
cmd.addRCmdOption("-lr", &learning_rate, 0.01, "learning rate");
cmd.addRCmdOption("-e", &accuracy, 0.00001, "end accuracy");
cmd.addRCmdOption("-lrd", &decay, 0, "learning rate decay");
cmd.addICmdOption("-kfold", &k_fold, -1, "number of folds, if you want to do cross-validation");
cmd.addRCmdOption("-wd", &weight_decay, 0, "weight decay", true);
cmd.addText("\nMisc Options:");
cmd.addICmdOption("-seed", &the_seed, -1, "the random seed");
cmd.addICmdOption("-load", &max_load, -1, "max number of examples to load for train");
cmd.addICmdOption("-load_valid", &max_load_valid, -1, "max number of examples to load for valid");
cmd.addSCmdOption("-valid", &valid_file, "", "validation file, if you want it");
cmd.addSCmdOption("-dir", &dir_name, ".", "directory to save measures");
cmd.addSCmdOption("-save", &model_file, "", "the model file");
cmd.addBCmdOption("-bin", &binary_mode, false, "binary mode for files");
// Test mode
cmd.addMasterSwitch("--test");
cmd.addText("\nArguments:");
cmd.addSCmdArg("model", &model_file, "the model file");
cmd.addSCmdArg("file", &file, "the test file");
cmd.addText("\nMisc Options:");
cmd.addICmdOption("-load", &max_load, -1, "max number of examples to load for train");
cmd.addSCmdOption("-dir", &dir_name, ".", "directory to save measures");
cmd.addBCmdOption("-bin", &binary_mode, false, "binary mode for files");
// Read the command line
int mode = cmd.read(argc, argv);
DiskXFile *model = NULL;
if(mode == 1)
{
model = new(allocator) DiskXFile(model_file, "r");
cmd.loadXFile(model);
}
// If the user didn't give any random seed,
// generate a random random seed...
if(mode == 0)
{
if(the_seed == -1)
Random::seed();
else
Random::manualSeed((long)the_seed);
}
cmd.setWorkingDirectory(dir_name);
//=================== Create the MLP... =========================
OneHotClassFormat *class_format = new(allocator) OneHotClassFormat(n_targets);
Trainer **trainers = (Trainer **)allocator->alloc(sizeof(Trainer *)*n_trainers);
for(int i = 0; i < n_trainers; i++)
{
// MLP
MLP *mlp = NULL;
if(n_hu > 0)
mlp = new(allocator) MLP(4, n_inputs, "linear", n_hu,
"tanh", n_hu, "linear", n_targets, "log-softmax", n_targets);
else
mlp = new(allocator) MLP(2, n_inputs, "linear", n_targets, "log-softmax", n_targets);
mlp->setWeightDecay(weight_decay);
mlp->setPartialBackprop();
// Criterion
ClassNLLCriterion *cllc = new(allocator) ClassNLLCriterion(class_format);
// Trainer
trainers[i] = new(allocator) StochasticGradient(mlp, cllc);
if(mode == 0)
{
trainers[i]->setIOption("max iter", max_iter);
trainers[i]->setROption("end accuracy", accuracy);
trainers[i]->setROption("learning rate", learning_rate);
trainers[i]->setROption("learning rate decay", decay);
}
}
WeightedSumMachine wsm(trainers, n_trainers, NULL);
if(mode == 1)
wsm.loadXFile(model);
//=================== DataSets & Measurers... ===================
// Create the training dataset (normalize inputs)
MatDataSet *mat_data = new(allocator) MatDataSet(file, n_inputs, 1, false, max_load, binary_mode);
MeanVarNorm *mv_norm = new(allocator) MeanVarNorm(mat_data);
if(mode == 1)
mv_norm->loadXFile(model);
mat_data->preProcess(mv_norm);
DataSet *data = new(allocator) ClassFormatDataSet(mat_data, n_targets);
// The list of measurers...
MeasurerList measurers;
// The validation set...
if(mode == 0)
{
// Create a validation set, if any
if(strcmp(valid_file, ""))
{
// Load the validation set and normalize it with the
// values in the train dataset
MatDataSet *valid_mat_data = new(allocator) MatDataSet(valid_file, n_inputs, 1, false, max_load_valid, binary_mode);
valid_mat_data->preProcess(mv_norm);
DataSet *valid_data = new(allocator) ClassFormatDataSet(valid_mat_data, n_targets);
ClassMeasurer *valid_class_meas = new(allocator) ClassMeasurer(wsm.outputs, valid_data, class_format, cmd.getXFile("the_valid_class_err"));
measurers.addNode(valid_class_meas);
}
}
// Measurers on the training dataset
ClassMeasurer *class_meas = new(allocator) ClassMeasurer(wsm.outputs, data, class_format, cmd.getXFile("the_class_err"));
measurers.addNode(class_meas);
//=================== The Trainer ===============================
Boosting boosting(&wsm, class_format);
//=================== Let's go... ===============================
if(mode == 0)
{
if(k_fold <= 0)
{
boosting.train(data, &measurers);
if(strcmp(model_file, ""))
{
DiskXFile model_(model_file, "w");
cmd.saveXFile(&model_);
wsm.saveXFile(&model_);
mv_norm->saveXFile(&model_);
}
}
else
{
KFold k(&boosting, k_fold);
k.crossValidate(data, NULL, &measurers);
}
}
else
boosting.test(&measurers);
delete allocator;
return(0);
}
|