1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
|
const char *help = "\
SVMTorch III (c) Trebolloc & Co 2002\n\
\n\
This program will train a SVM for classification or regression\n\
with a gaussian kernel (default) or a polynomial kernel.\n\
It supposes that the file you provide contains two classes,\n\
except if you use the '-class' option which trains one class\n\
against the others.\n";
#include <torch/MatDataSet.h>
#include <torch/TwoClassFormat.h>
#include <torch/ClassMeasurer.h>
#include <torch/MSEMeasurer.h>
#include <torch/QCTrainer.h>
#include <torch/CmdLine.h>
#include <torch/Random.h>
#include <torch/SVMRegression.h>
#include <torch/SVMClassification.h>
#include <torch/KFold.h>
#include <torch/DiskXFile.h>
#include <torch/ClassFormatDataSet.h>
#include <torch/MeanVarNorm.h>
using namespace Torch;
int main(int argc, char **argv)
{
char *file;
real c_cst, stdv, eps_regression;
bool regression;
real accuracy, cache_size;
int iter_shrink, k_fold;
int the_seed;
int max_load;
char *dir_name;
char *model_file;
bool binary_mode;
int class_against_the_others;
int degree;
real a_cst, b_cst;
bool normalize;
Allocator *allocator = new Allocator;
//=================== The command-line ==========================
// Construct the command line
CmdLine cmd;
// Put the help line at the beginning
cmd.info(help);
// Train mode
cmd.addText("\nArguments:");
cmd.addSCmdArg("file", &file, "the train file");
cmd.addSCmdArg("model", &model_file, "the model file");
cmd.addText("\nModel Options:");
cmd.addRCmdOption("-c", &c_cst, 100., "trade off cst between error/margin");
cmd.addRCmdOption("-std", &stdv, 10., "the std parameter in the gaussian kernel [exp(-|x-y|^2/std^2)]", true);
cmd.addICmdOption("-degree", °ree, -1, "if positive, use a polynomial kernel [(a xy + b)^d] with the specified degree", true);
cmd.addRCmdOption("-a", &a_cst, 1., "constant a in the polynomial kernel", true);
cmd.addRCmdOption("-b", &b_cst, 1., "constant b in the polynomial kernel", true);
cmd.addBCmdOption("-rm", ®ression, false, "regression mode", true);
cmd.addRCmdOption("-eps", &eps_regression, 0.7, "eps tube in regression");
cmd.addICmdOption("-class", &class_against_the_others, -1, "train the given class against the others", true);
cmd.addText("\nLearning Options:");
cmd.addBCmdOption("-norm", &normalize, false, "normalize the data (mean/stdv)?", true);
cmd.addRCmdOption("-e", &accuracy, 0.01, "end accuracy");
cmd.addRCmdOption("-m", &cache_size, 50., "cache size in Mo");
cmd.addICmdOption("-h", &iter_shrink, 100, "minimal number of iterations before shrinking");
cmd.addText("\nMisc Options:");
cmd.addICmdOption("-seed", &the_seed, -1, "the random seed");
cmd.addICmdOption("-load", &max_load, -1, "max number of examples to load for train");
cmd.addSCmdOption("-dir", &dir_name, ".", "directory to save measures");
cmd.addBCmdOption("-bin", &binary_mode, false, "binary mode for files");
// KFold mode (one difference with previous mode: no model is available)
cmd.addMasterSwitch("--kfold");
cmd.addText("\nArguments:");
cmd.addSCmdArg("file", &file, "the train file");
cmd.addICmdArg("k", &k_fold, "number of folds");
cmd.addText("\nModel Options:");
cmd.addRCmdOption("-c", &c_cst, 100., "trade off cst between error/margin");
cmd.addRCmdOption("-std", &stdv, 10., "the std parameter in the gaussian kernel", true);
cmd.addICmdOption("-degree", °ree, -1, "if positive, use a polynomial kernel [(a xy + b)^d] with the specified degree", true);
cmd.addRCmdOption("-a", &a_cst, 1., "constant a in the polynomial kernel", true);
cmd.addRCmdOption("-b", &b_cst, 1., "constant b in the polynomial kernel", true);
cmd.addBCmdOption("-rm", ®ression, false, "regression mode", true);
cmd.addRCmdOption("-eps", &eps_regression, 0.7, "eps tube in regression");
cmd.addICmdOption("-class", &class_against_the_others, -1, "train the given class against the others", true);
cmd.addText("\nLearning Options:");
cmd.addBCmdOption("-norm", &normalize, false, "normalize the data (mean/stdv)?", true);
cmd.addRCmdOption("-e", &accuracy, 0.01, "end accuracy");
cmd.addRCmdOption("-m", &cache_size, 50., "cache size in Mo");
cmd.addICmdOption("-h", &iter_shrink, 100, "minimal number of iterations before shrinking");
cmd.addText("\nMisc Options:");
cmd.addICmdOption("-seed", &the_seed, -1, "the random seed");
cmd.addICmdOption("-load", &max_load, -1, "max number of examples to load for train");
cmd.addSCmdOption("-dir", &dir_name, ".", "directory to save measures");
cmd.addBCmdOption("-bin", &binary_mode, false, "binary mode for files");
// Test mode
cmd.addMasterSwitch("--test");
cmd.addText("\nArguments:");
cmd.addSCmdArg("model", &model_file, "the model file");
cmd.addSCmdArg("file", &file, "the test file");
cmd.addText("\nMisc Options:");
cmd.addICmdOption("-load", &max_load, -1, "max number of examples to load for test");
cmd.addSCmdOption("-dir", &dir_name, ".", "directory to save measures");
cmd.addBCmdOption("-bin", &binary_mode, false, "binary mode for files");
// Read the command line
int mode = cmd.read(argc, argv);
DiskXFile *model = NULL;
if(mode == 2)
{
model = new(allocator) DiskXFile(model_file, "r");
cmd.loadXFile(model);
}
// If the user didn't give any random seed,
// generate a random random seed...
if(mode < 2)
{
if(the_seed == -1)
Random::seed();
else
Random::manualSeed((long)the_seed);
}
cmd.setWorkingDirectory(dir_name);
//=================== Create the SVM... =========================
SVM *svm = NULL;
Kernel *kernel = NULL;
if(degree > 0)
kernel = new(allocator) PolynomialKernel(degree, a_cst, b_cst);
else
kernel = new(allocator) GaussianKernel(1./(stdv*stdv));
if(regression)
svm = new(allocator) SVMRegression(kernel);
else
svm = new(allocator) SVMClassification(kernel);
if(mode < 2)
{
svm->setROption("C", c_cst);
svm->setROption("cache size", cache_size);
if(regression)
svm->setROption("eps regression", eps_regression);
}
//=================== DataSets & Measurers... ===================
// Create the training dataset
DataSet *data = NULL;
MeanVarNorm *mv_norm = NULL;
if(regression)
{
data = new(allocator) MatDataSet(file, -1, 1, false, max_load, binary_mode);
if(normalize)
{
mv_norm = new(allocator) MeanVarNorm(data);
if(mode == 2)
mv_norm->loadXFile(model);
data->preProcess(mv_norm);
}
}
else
{
MatDataSet *mat_data = new(allocator) MatDataSet(file, -1, 1, false, max_load, binary_mode);
if(normalize)
{
mv_norm = new(allocator) MeanVarNorm(mat_data);
if(mode == 2)
mv_norm->loadXFile(model);
mat_data->preProcess(mv_norm);
}
Sequence *class_labels = NULL;
if(class_against_the_others >= 0)
{
int n_classes = -1;
for(int t = 0; t < mat_data->n_examples; t++)
{
mat_data->setExample(t);
int z = (int)mat_data->targets->frames[0][0];
if(z > n_classes)
n_classes = z;
}
n_classes++;
message("Training/testing class %d against the others (%d classes detected)", class_against_the_others, n_classes);
class_labels = new(allocator) Sequence(n_classes, 1);
for(int i = 0; i < n_classes; i++)
{
if(i == class_against_the_others)
class_labels->frames[i][0] = 1;
else
class_labels->frames[i][0] = -1;
}
}
else
{
class_labels = new(allocator) Sequence(2, 1);
class_labels->frames[0][0] = -1;
class_labels->frames[1][0] = 1;
}
data = new(allocator) ClassFormatDataSet(mat_data, class_labels);
}
// The list of measurers...
MeasurerList measurers;
if(mode > 0)
{
if(regression)
{
MSEMeasurer *mse_meas = new(allocator) MSEMeasurer(svm->outputs, data, cmd.getXFile("the_mse_err"));
measurers.addNode(mse_meas);
}
else
{
TwoClassFormat *class_format = new(allocator) TwoClassFormat(data);
ClassMeasurer *class_meas = new(allocator) ClassMeasurer(svm->outputs, data, class_format, cmd.getXFile("the_class_err"));
measurers.addNode(class_meas);
}
}
// Reload the model in test mode
if(mode == 2)
svm->loadXFile(model);
//=================== The Trainer ===============================
QCTrainer trainer(svm);
if(mode == 0)
{
trainer.setROption("end accuracy", accuracy);
trainer.setIOption("iter shrink", iter_shrink);
}
//=================== Let's go... ===============================
// Train
if(mode == 0)
{
trainer.train(data, NULL);
message("%d SV with %d at bounds", svm->n_support_vectors, svm->n_support_vectors_bound);
DiskXFile model_(model_file, "w");
cmd.saveXFile(&model_);
if(normalize)
mv_norm->saveXFile(&model_);
svm->saveXFile(&model_);
}
// KFold
if(mode == 1)
{
KFold k(&trainer, k_fold);
k.crossValidate(data, NULL, &measurers);
}
// Test
if(mode == 2)
trainer.test(&measurers);
delete allocator;
return(0);
}
|