1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
|
const char *help = "\
KMeans (c) Samy Bengio & Co 2001\n\
\n\
This program will maximize the kmeans criterion of a dataset\n";
#include <torch/EMTrainer.h>
#include <torch/StochasticGradient.h>
#include <torch/MeanVarNorm.h>
#include <torch/KFold.h>
#include <torch/KMeans.h>
#include <torch/DiskMatDataSet.h>
#include <torch/MatDataSet.h>
#include <torch/CmdLine.h>
#include <torch/NLLMeasurer.h>
#include <torch/NLLCriterion.h>
#include <torch/Random.h>
#include <torch/FileListCmdOption.h>
#include <unistd.h>
using namespace Torch;
// create a vector of variance flooring
void initializeThreshold(DataSet* data,real* thresh, real threshold);
int main(int argc, char **argv)
{
real accuracy;
real threshold;
int max_iter;
int n_clusters;
int n_inputs;
real prior;
bool stochastic;
real lrate;
real lrate_decay;
int max_load;
int the_seed;
bool norm;
char *dir_name;
char *model_file;
char *save_model_file;
int k_fold;
bool binary_mode;
Allocator *allocator = new Allocator;
FileListCmdOption file_list("file name", "the list files or one data file");
file_list.isArgument(true);
//===============================================================
//=================== The command-line ==========================
//===============================================================
// Construct the command line
CmdLine cmd;
// Put the help line at the beginning
cmd.info(help);
// Train mode
cmd.addText("\nArguments:");
cmd.addCmdOption(&file_list);
cmd.addText("\nModel Options:");
cmd.addICmdOption("-n_clusters", &n_clusters, 10, "number of clusters");
cmd.addText("\nLearning Options:");
cmd.addRCmdOption("-threshold", &threshold, 0.001, "variance threshold");
cmd.addRCmdOption("-prior", &prior, 0.001, "prior on the weights");
cmd.addICmdOption("-iter", &max_iter, 25, "max number of iterations of KMeans");
cmd.addRCmdOption("-e", &accuracy, 0.00001, "end accuracy");
cmd.addICmdOption("-kfold", &k_fold, -1, "number of folds, if you want to do cross-validation");
cmd.addBCmdOption("-stochastic", &stochastic, false, "train by stochastic gradient instead of EM");
cmd.addRCmdOption("-lrate", &lrate, 0.1, "learning rate for stochastic gradient");
cmd.addRCmdOption("-lrate_decay", &lrate_decay, 0.001, "learning rate decay for stochastic gradient");
cmd.addText("\nMisc Options:");
cmd.addICmdOption("-seed", &the_seed, -1, "the random seed");
cmd.addICmdOption("-load", &max_load, -1, "max number of examples to load for train");
cmd.addSCmdOption("-dir", &dir_name, ".", "directory to save measures");
cmd.addSCmdOption("-save", &save_model_file, "", "the model file");
cmd.addBCmdOption("-bin", &binary_mode, false, "binary mode for files");
cmd.addBCmdOption("-norm", &norm, false, "normalize the datas");
// Test mode
cmd.addMasterSwitch("--test");
cmd.addText("\nArguments:");
cmd.addSCmdArg("model", &model_file, "the model file");
cmd.addCmdOption(&file_list);
cmd.addText("\nMisc Options:");
cmd.addICmdOption("-load", &max_load, -1, "max number of examples to load for train");
cmd.addSCmdOption("-dir", &dir_name, ".", "directory to save measures");
cmd.addBCmdOption("-bin", &binary_mode, false, "binary mode for files");
cmd.addBCmdOption("-norm", &norm, false, "normalize the datas");
// Read the command line
int mode = cmd.read(argc, argv);
cmd.setWorkingDirectory(dir_name);
//DiskXFile::setBigEndianMode();
//====================================================================
//=================== Create the DataSet ... =========================
//====================================================================
MatDataSet data(file_list.file_names, file_list.n_files, -1, 0, true, max_load, binary_mode);
MeanVarNorm* mv_norm = NULL;
if(norm)
mv_norm = new(allocator)MeanVarNorm (&data);
//====================================================================
//=================== Training Mode =================================
//====================================================================
if(mode == 0) {
if (the_seed == -1)
Random::seed();
else
Random::manualSeed((long)the_seed);
if(norm)
data.preProcess(mv_norm);
//=================== Create the KMeans... =========================
real* thresh = (real*)allocator->alloc(data.n_inputs*sizeof(real));
initializeThreshold(&data,thresh,threshold);
KMeans kmeans(data.n_inputs, n_clusters);
kmeans.setVarThreshold(thresh);
kmeans.setROption("prior weights",prior);
// the kmeans measurer
MeasurerList measurers;
NLLMeasurer nll_measurer(kmeans.log_probabilities,&data,cmd.getXFile("kmeans_train_val"));
measurers.addNode(&nll_measurer);
// the trainer
Trainer* trainer = NULL;
Criterion* criterion = NULL;
if (stochastic) {
criterion = new(allocator) NLLCriterion();
StochasticGradient* sg_t = new(allocator) StochasticGradient(&kmeans,criterion);
sg_t->setROption("end accuracy", accuracy);
sg_t->setIOption("max iter", max_iter);
sg_t->setROption("learning rate", lrate);
sg_t->setROption("learning rate decay", lrate_decay);
trainer = sg_t;
} else {
EMTrainer* em_t = new(allocator) EMTrainer(&kmeans);
em_t->setROption("end accuracy", accuracy);
em_t->setIOption("max iter", max_iter);
trainer = em_t;
}
//=================== Let's go... ===============================
if(k_fold <= 0)
{
trainer->train(&data, &measurers);
if(strcmp(save_model_file, ""))
{
DiskXFile model_(save_model_file, "w");
cmd.saveXFile(&model_);
if(norm)
mv_norm->saveXFile(&model_);
model_.taggedWrite(&n_clusters, sizeof(int), 1, "n_clusters");
model_.taggedWrite(&data.n_inputs, sizeof(int), 1, "n_inputs");
kmeans.saveXFile(&model_);
}
}
else
{
KFold k(trainer, k_fold);
k.crossValidate(&data, NULL, &measurers);
}
}
//====================================================================
//====================== Testing Mode ===============================
//====================================================================
if(mode == 1){
DiskXFile model(model_file, "r");
cmd.loadXFile(&model);
if(norm){
mv_norm->loadXFile(&model);
data.preProcess(mv_norm);
}
model.taggedRead(&n_clusters, sizeof(int), 1, "n_clusters");
model.taggedRead(&n_inputs, sizeof(int), 1, "n_inputs");
if(n_inputs != data.n_inputs)
error("kmeans: the input number of the KMeans (%d) do not correspond to the input number of the dataset (%d)", n_inputs, data.n_inputs);
KMeans kmeans(data.n_inputs,n_clusters);
// set the training options
kmeans.loadXFile(&model);
//=================== DataSets & Measurers... ===================
// Measurers on the training dataset
MeasurerList measurers;
NLLMeasurer nll_meas(kmeans.min_cluster, &data, cmd.getXFile("kmeans_test_val"));
measurers.addNode(&nll_meas);
//=================== The Trainer ===============================
// The Gradient Machine Trainer
EMTrainer trainer(&kmeans);
//=================== Let's go... ===============================
trainer.test(&measurers);
}
delete allocator;
return(0);
}
void initializeThreshold(DataSet* data,real* thresh, real threshold)
{
MeanVarNorm norm(data);
real* ptr = norm.inputs_stdv;
real* p_var = thresh;
for(int i=0;i<data->n_inputs;i++)
*p_var++ = *ptr * *ptr++ * threshold;
}
|