1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
|
// Copyright (C) 2003--2004 Samy Bengio (bengio@idiap.ch)
//
// This file is part of Torch 3.1.
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// 3. The name of the author may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
// IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
// OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
// IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
// NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
// THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "SpeechHMM.h"
#include "log_add.h"
namespace Torch {
SpeechHMM::SpeechHMM(int n_models_, HMM **models_, LexiconInfo* lex_, EMTrainer** model_trainer_) : HMM(0,(Distribution**)models_,NULL)
{
n_models = n_models_;
data = NULL;
models = models_;
max_n_states = 1;
initial_models_trainer_measurers = NULL;
addROption("prior transitions", &prior_transitions , 1e-3, "minimum weights for each gaussians");
addBOption("targets are phonemes", &phoneme_targets, false, "for initialization, targets are often phonemes instead of words");
model_trainer = model_trainer_;
lexicon = lex_;
add_to_targets = 0;
targets = new(allocator) Sequence(1,1);
for (int i=0;i<n_models;i++) {
params->add(models[i]->params);
der_params->add(models[i]->der_params);
}
// find the longest sequence in the dataset
// in terms of frames and number of states of the graph
log_probabilities_s = new (allocator)Sequence(1,max_n_states);
log_alpha = new (allocator)Sequence(1,max_n_states);
log_beta = new (allocator)Sequence(1,max_n_states);
arg_viterbi = new (allocator)Sequence(1,max_n_states);
viterbi_sequence = new (allocator)Sequence(1,1);
states = (Distribution**)allocator->alloc(sizeof(Distribution*)*max_n_states);
states_to_model_states = (int*)allocator->alloc(sizeof(int)*max_n_states);
states_to_model = (int*)allocator->alloc(sizeof(int)*max_n_states);
states_to_word = (int*)allocator->alloc(sizeof(int)*max_n_states);
log_transitions = (real**)allocator->alloc(sizeof(real*)*max_n_states);
word_transitions = (bool**)allocator->alloc(sizeof(bool*)*max_n_states);
for (int i=0;i<max_n_states;i++) {
log_transitions[i] = (real*)allocator->alloc(sizeof(real)*max_n_states);;
word_transitions[i] = (bool*)allocator->alloc(sizeof(bool)*max_n_states);;
for (int j=0;j<max_n_states;j++) {
log_transitions[i][j] = LOG_ZERO;
word_transitions[i][j] = false;
}
}
}
void SpeechHMM::setMaxNStates(int max_n_states_)
{
if(max_n_states_ <= max_n_states)
return;
for (int i=0;i<max_n_states;i++) {
allocator->free(log_transitions[i]);
allocator->free(word_transitions[i]);
}
max_n_states = max_n_states_;
allocator->free(log_probabilities_s);
allocator->free(log_alpha);
allocator->free(log_beta);
allocator->free(arg_viterbi);
log_probabilities_s = new (allocator)Sequence(1,max_n_states);
log_alpha = new (allocator)Sequence(1,max_n_states);
log_beta = new (allocator)Sequence(1,max_n_states);
arg_viterbi = new (allocator)Sequence(1,max_n_states);
states = (Distribution**)allocator->realloc(states,sizeof(Distribution*)*max_n_states);
states_to_model_states = (int*)allocator->realloc(states_to_model_states, sizeof(int)*max_n_states);
states_to_model = (int*)allocator->realloc(states_to_model, sizeof(int)*max_n_states);
states_to_word = (int*)allocator->realloc(states_to_word, sizeof(int)*max_n_states);
log_transitions = (real**)allocator->realloc(log_transitions, sizeof(real*)*max_n_states);
word_transitions = (bool**)allocator->realloc(word_transitions, sizeof(bool*)*max_n_states);
for (int i=0;i<max_n_states;i++) {
log_transitions[i] = (real*)allocator->alloc(sizeof(real)*max_n_states);;
word_transitions[i] = (bool*)allocator->alloc(sizeof(bool)*max_n_states);;
for (int j=0;j<max_n_states;j++) {
log_transitions[i][j] = LOG_ZERO;
word_transitions[i][j] = false;
}
}
}
void SpeechHMM::loadXFile(XFile *file)
{
for (int i=0;i<n_models;i++)
models[i]->loadXFile(file);
}
void SpeechHMM::saveXFile(XFile *file)
{
for (int i=0;i<n_models;i++)
models[i]->saveXFile(file);
}
void SpeechHMM::setTargets(Sequence* t)
{
if (!phoneme_targets && add_to_targets > 0) {
if (targets->frame_size != t->frame_size) {
allocator->free(targets);
targets = new(allocator) Sequence(t->n_frames+add_to_targets,t->frame_size);
} else
targets->resize(t->n_frames+add_to_targets);
int j=0;
if (lexicon->vocabulary->sil_index >= 0) {
if (t->frame_size > 1)
targets->frames[j][1] = 1; // silence lasts 1 frame
targets->frames[j++][0] = lexicon->vocabulary->sil_index;
}
for (int i=0;i<t->n_frames;i++,j++) {
for (int k=0;k<t->frame_size;k++) {
targets->frames[j][k] = t->frames[i][k];
}
}
if (lexicon->vocabulary->sent_end_index >= 0) {
if (t->frame_size > 1) {
targets->frames[j][1] = t->frames[t->n_frames-1][1];
targets->frames[j-1][1] = t->frames[t->n_frames-1][1]-1;
}
targets->frames[j++][0] = lexicon->vocabulary->sent_end_index;
}
} else
targets = t;
}
void SpeechHMM::splitDataSet(DataSet* data_, ExampleFrameSelectorDataSet** split_data_)
{
// just print some informations
data_->setExample(0);
message("SpeechHMM: Targets are given as %s",phoneme_targets ? "phonemes" : "words");
message("SpeechHMM: Targets are given %s alignments",data_->targets->frame_size > 1 ? "with" : "without");
for (int i=0; i<data_->n_examples; i++) {
data_->setExample(i);
setTargets(data_->targets);
Sequence* inputs = data_->inputs;
int n_frames = inputs->n_frames;
if(targets->frame_size > 1) {
// we have the alignment
for (int j=0;j<targets->n_frames;j++) {
int unit = (int)targets->frames[j][0];
real begin_unit = j == 0 ? 0. : targets->frames[j-1][1];
real end_unit = targets->frames[j][1];
if (phoneme_targets) {
// the alignment is given in terms of phonemes
int bu = (int)begin_unit;
int eu = (int)end_unit;
if (eu > n_frames) {
warning("The target alignment has been truncated from %d to %d",eu,n_frames-1);
eu = n_frames;
}
int length = eu - bu;
split_data_[unit]->addExample(i, bu, length, j, 1);
} else {
// the alignment is given in terms of words
real n_frames_in_word = end_unit - begin_unit;
// will work for the first pronunciation only!
int n_states_in_word = 0;
int lex_ind = lexicon->vocab_to_lex_map[unit].pronuns[0];
LexiconInfoEntry *lex_ent = &lexicon->entries[lex_ind];
for (int k=0;k<lex_ent->n_phones;k++) {
int phoneme = lex_ent->phones[k];
n_states_in_word += models[phoneme]->n_states-2;
}
real n_frames_per_state = n_frames_in_word/n_states_in_word;
// finaly bordel a noeud the index!!!
real begin_phoneme = begin_unit;
real end_phoneme;
for (int k=0;k<lex_ent->n_phones;k++) {
int phoneme = lex_ent->phones[k];
end_phoneme = begin_phoneme + n_frames_per_state *
(models[phoneme]->n_states-2);
int bu = (int)begin_phoneme;
int eu = (int)end_phoneme;
if (eu >= n_frames) {
warning("SpeechHMM::splitData: The target alignment has been truncated from %d to %d",eu,n_frames-1);
eu = n_frames - 1;
}
int length = eu - bu;
split_data_[phoneme]->addExample(i, bu, length, j, 1);
begin_phoneme = end_phoneme;
}
}
}
} else {
//linear alignment!
if (phoneme_targets) {
// targets are phonemes
//find the total number of states in the example
int tot_n_states = 0;
for( int j=0;j<targets->n_frames;j++) {
int phoneme = (int)targets->frames[j][0];
tot_n_states += models[phoneme]->n_states-2;
}
//then assign frames for each phoneme model
real n_frames_per_state = (real)n_frames/tot_n_states;
real begin_phoneme = 0.;
for( int j=0;j<targets->n_frames;j++) {
int phoneme = (int)targets->frames[j][0];
real end_phoneme = begin_phoneme + n_frames_per_state *
(models[phoneme]->n_states-2);
int ib = (int)begin_phoneme;
int ie = (int)end_phoneme;
if (ie >= n_frames) {
ie = n_frames - 1;
}
int length = ie - ib;
if (length < 1) {
warning("a segmentation produced a sequence of frames (%d) less than then number of states (%d) of the model",n_frames,tot_n_states);
} else
split_data_[phoneme]->addExample(i, ib, length, j, 1);
begin_phoneme = end_phoneme;
}
} else {
// targets are given in terms of words
//this will work with the first pronounciation of each word only!!!
//find the total number of states in the example
int tot_n_states = 0;
for( int j=0;j<targets->n_frames;j++) {
int word = (int)targets->frames[j][0];
int lex_ind = lexicon->vocab_to_lex_map[word].pronuns[0];
LexiconInfoEntry *lex_ent = &lexicon->entries[lex_ind];
for (int k=0;k<lex_ent->n_phones;k++) {
int phoneme = lex_ent->phones[k];
tot_n_states += models[phoneme]->n_states-2;
}
}
//then assign frames for each phoneme model
real n_frames_per_state = (real)n_frames/tot_n_states;
real begin_phoneme = 0.;
for(int j=0;j<targets->n_frames;j++) {
int word = (int)targets->frames[j][0];
int lex_ind = lexicon->vocab_to_lex_map[word].pronuns[0];
LexiconInfoEntry *lex_ent = &lexicon->entries[lex_ind];
for (int k=0;k<lex_ent->n_phones;k++) {
int phoneme = lex_ent->phones[k];
real end_phoneme = begin_phoneme + n_frames_per_state *
(models[phoneme]->n_states-2);
int ib = (int)begin_phoneme;
int ie = (int)end_phoneme;
if (ie >= n_frames) {
ie = n_frames - 1;
}
int length = ie - ib;
if (length < 1) {
warning("a segmentation produced a sequence of frames (%d) less than then number of states (%d) of the model",n_frames,tot_n_states);
} else
split_data_[phoneme]->addExample(i, ib, length, j, 1);
begin_phoneme = end_phoneme;
}
}
}
}
}
}
void SpeechHMM::setDataSet(DataSet* data_)
{
// if alignment information is given in the dataset, use it.
// otherwise, do a linear alignment along the states
data = data_;
add_to_targets = 0;
if (!phoneme_targets) {
if (lexicon->vocabulary->sil_index >= 0)
add_to_targets++;
if (lexicon->vocabulary->sent_end_index >= 0)
add_to_targets++;
}
if (initialize) {
// initialize model
ExampleFrameSelectorDataSet** sub_dataset = (ExampleFrameSelectorDataSet**)allocator->alloc(sizeof(ExampleFrameSelectorDataSet*)*n_models);
for (int m=0;m<n_models;m++) {
sub_dataset[m] = new(allocator) ExampleFrameSelectorDataSet(data_);
}
splitDataSet(data_, sub_dataset);
for (int m=0;m<n_models;m++) {
// the transitions and emission parameters will be set in each model
if (sub_dataset[m]->n_examples==0) {
message("KMeans initialization of model %d with all data",m);
models[m]->setDataSet(data_);
} else if (model_trainer) {
message("HMM initialization of model %d with own aligned data",m);
model_trainer[m]->train(sub_dataset[m], initial_models_trainer_measurers);
} else {
message("KMeans initialization of model %d with own aligned data",m);
models[m]->setDataSet(sub_dataset[m]);
}
}
} else {
// we still need to set the dataset of each model
for (int m=0;m<n_models;m++) {
models[m]->setDataSet(data_);
}
}
}
void SpeechHMM::addConnectionsBetweenWordsToModel(int word,int next_word, int current_state,int next_current_state, real log_n_next)
{
int n_states_word_pronun = 0;
int n_pronuns = lexicon->vocab_to_lex_map[word].n_pronuns;
for (int l=0;l<n_pronuns;l++) {
int lex_ind = lexicon->vocab_to_lex_map[word].pronuns[l];
LexiconInfoEntry *lex_ent = &lexicon->entries[lex_ind];
int current_model = lex_ent->phones[lex_ent->n_phones-1];
int n_states_model = models[current_model]->n_states;
int n_states_next_word_pronun = 0;
int n_pronuns_next = lexicon->vocab_to_lex_map[next_word].n_pronuns;
int n_states_current_word_pronun = nStatesInWordPronunciation(word,l);
n_states_word_pronun += n_states_current_word_pronun;
for (int m=0;m<n_pronuns_next;m++) {
int next_lex_ind = lexicon->vocab_to_lex_map[next_word].pronuns[m];
LexiconInfoEntry *next_lex_ent = &lexicon->entries[next_lex_ind];
int next_model = next_lex_ent->phones[0];
int n_states_next_model = models[next_model]->n_states;
for (int j=1;j<n_states_model;j++) {
if (models[current_model]->log_transitions[n_states_model-1][j] != LOG_ZERO) {
for (int k=1;k<n_states_next_model-1;k++) {
if (models[next_model]->log_transitions[k][0] != LOG_ZERO) {
log_transitions[next_current_state+n_states_next_word_pronun+k-1][current_state+n_states_word_pronun-n_states_model+1+j] =
models[current_model]->log_transitions[n_states_model-1][j] +
models[next_model]->log_transitions[k][0] - log_n_next;
word_transitions[next_current_state+n_states_next_word_pronun+k-1][current_state+n_states_word_pronun-n_states_model+1+j] = true;
}
}
}
}
n_states_next_word_pronun += nStatesInWordPronunciation(next_word,m);
}
}
}
int SpeechHMM::addWordToModel(int word, int current_state)
{
int n_pronuns = lexicon->vocab_to_lex_map[word].n_pronuns;
for (int i=0;i<n_pronuns;i++) {
int lex_ind = lexicon->vocab_to_lex_map[word].pronuns[i];
LexiconInfoEntry *lex_ent = &lexicon->entries[lex_ind];
// for each phoneme
for (int l=0;l<lex_ent->n_phones;l++) {
int current_model = lex_ent->phones[l];
// for each emitting state of the current model
int n_states_model = models[current_model]->n_states;
for (int j=1;j<n_states_model-1;j++,current_state++) {
//printf("In word %d Loading model %d state %d into state %d\n",word, current_model, j, current_state);
states[current_state] = models[current_model]->states[j];
states_to_model_states[current_state] = j;
states_to_model[current_state] = current_model;
states_to_word[current_state] = word;
// for each transition from current_state
for (int k=1;k<n_states_model-1;k++) {
log_transitions[current_state+k-j][current_state] =
models[current_model]->log_transitions[k][j];
}
}
// add transitions between phonemes
if (l<lex_ent->n_phones-1) {
int next_model = lex_ent->phones[l+1];
int n_states_next_model = models[next_model]->n_states;
for (int j=1;j<n_states_model;j++) {
if (models[current_model]->log_transitions[n_states_model-1][j] != LOG_ZERO) {
for (int k=1;k<n_states_next_model-1;k++) {
if (models[next_model]->log_transitions[k][0] != LOG_ZERO)
log_transitions[current_state+k-1][current_state-n_states_model+1+j] =
models[current_model]->log_transitions[n_states_model-1][j] +
models[next_model]->log_transitions[k][0];
}
}
}
}
}
}
return current_state;
}
void SpeechHMM::prepareTrainModel(Sequence* inputs)
{
// create the new transition matrix, based on the models and the target sentence
setTargets(data->targets);
n_states = 2;
for (int j=0;j<targets->n_frames;j++) {
int word = (int)targets->frames[j][0];
int n_pronuns = lexicon->vocab_to_lex_map[word].n_pronuns;
for (int l=0;l<n_pronuns;l++) {
int lex_ind = lexicon->vocab_to_lex_map[word].pronuns[l];
LexiconInfoEntry *lex_ent = &lexicon->entries[lex_ind];
// for each phoneme
for (int k=0;k<lex_ent->n_phones;k++) {
int current_model = lex_ent->phones[k];
n_states += models[current_model]->n_states-2;
}
}
}
// first realloc if necessary and test for minimum sequence length
if (inputs->n_frames < n_states-2)
warning("your sentence has %d frames where your HMM model has %d emitting states", inputs->n_frames,n_states-2);
setMaxNStates(n_states);
// then put all transitions to 0
for (int i=0;i<n_states;i++) {
for (int j=0;j<n_states;j++) {
log_transitions[i][j] = LOG_ZERO;
word_transitions[i][j] = false;
}
}
// the transitions from the initial state
int word = (int)targets->frames[0][0];
int lex_ind = lexicon->vocab_to_lex_map[word].pronuns[0];
LexiconInfoEntry *lex_ent = &lexicon->entries[lex_ind];
int current_model = lex_ent->phones[0];
states_to_model_states[0] = 0;
states_to_model[0] = current_model;
states_to_word[0] = word;
states[0] = NULL;
states[n_states-1] = NULL;
int n_states_in_word = 0;
int n_pronuns = lexicon->vocab_to_lex_map[word].n_pronuns;
real norm = log((real)n_pronuns);
for (int i=0;i<n_pronuns;i++) {
lex_ind = lexicon->vocab_to_lex_map[word].pronuns[i];
lex_ent = &lexicon->entries[lex_ind];
int current_model = lex_ent->phones[0];
for (int j=1;j<models[current_model]->n_states;j++)
log_transitions[n_states_in_word+j][0] = models[current_model]->log_transitions[j][0] - norm;
n_states_in_word += nStatesInWordPronunciation(word,i);
}
int current_state = 1;
for (int i=0;i<targets->n_frames;i++) {
word = (int)targets->frames[i][0];
n_pronuns = lexicon->vocab_to_lex_map[word].n_pronuns;
int next_current_state = addWordToModel(word, current_state);
if (i<targets->n_frames-1) {
int next_word = (int)targets->frames[i+1][0];
// add transitions between words
int n_pronuns_next = lexicon->vocab_to_lex_map[next_word].n_pronuns;
norm = log((real)n_pronuns*n_pronuns_next);
addConnectionsBetweenWordsToModel(word,next_word,current_state,
next_current_state,norm);
} else {
// add last transitions
n_states_in_word = 0;
for (int k=0;k<n_pronuns;k++) {
n_states_in_word += nStatesInWordPronunciation(word,k);
int lex_ind = lexicon->vocab_to_lex_map[word].pronuns[k];
LexiconInfoEntry *lex_ent = &lexicon->entries[lex_ind];
int current_model = lex_ent->phones[lex_ent->n_phones-1];
int n_states_in_model = models[current_model]->n_states;
for (int j=1;j<n_states_in_model-1;j++)
log_transitions[next_current_state][current_state+n_states_in_word-n_states_in_model+1+j] = models[current_model]->log_transitions[n_states_in_model-1][j];
}
}
current_state = next_current_state;
}
}
int SpeechHMM::nStatesInWordPronunciation(int word, int pronun)
{
int word_n_states=0;
int lex_ind = lexicon->vocab_to_lex_map[word].pronuns[pronun];
LexiconInfoEntry *lex_ent = &lexicon->entries[lex_ind];
for (int j=0;j<lex_ent->n_phones;j++) {
word_n_states += models[lex_ent->phones[j]]->n_states - 2;
}
return word_n_states;
}
int SpeechHMM::nStatesInWord(int word)
{
int word_n_states=0;
int n_pronuns = lexicon->vocab_to_lex_map[word].n_pronuns;
for (int i=0;i<n_pronuns;i++) {
word_n_states += nStatesInWordPronunciation(word,i);
}
return word_n_states;
}
void SpeechHMM::eMSequenceInitialize(Sequence* inputs)
{
prepareTrainModel(inputs);
log_probabilities_s->resize(inputs->n_frames);
log_alpha->resize(inputs->n_frames);
log_beta->resize(inputs->n_frames);
arg_viterbi->resize(inputs->n_frames);
viterbi_sequence->resize(inputs->n_frames);
// propagate to each model
for (int i=0;i<n_models;i++)
models[i]->eMSequenceInitialize(inputs);
}
void SpeechHMM::sequenceInitialize(Sequence* inputs)
{
prepareTrainModel(inputs);
log_probabilities_s->resize(inputs->n_frames);
log_alpha->resize(inputs->n_frames);
log_beta->resize(inputs->n_frames);
arg_viterbi->resize(inputs->n_frames);
viterbi_sequence->resize(inputs->n_frames);
// propagate to each model
for (int i=0;i<n_models;i++)
models[i]->sequenceInitialize(inputs);
}
void SpeechHMM::eMIterInitialize()
{
for (int i=0;i<n_models;i++)
models[i]->eMIterInitialize();
}
void SpeechHMM::iterInitialize()
{
for (int i=0;i<n_models;i++)
models[i]->iterInitialize();
}
void SpeechHMM::eMAccPosteriors(Sequence *inputs, real log_posterior)
{
// compute the beta by backward recursion
logBeta(inputs);
// accumulate the emission and transition posteriors
for (int f=0;f<inputs->n_frames;f++) {
for (int i=1;i<n_states-1;i++) {
if (log_alpha->frames[f][i] != LOG_ZERO &&
log_beta->frames[f][i] != LOG_ZERO) {
real log_posterior_i_f = log_posterior + log_alpha->frames[f][i] +
log_beta->frames[f][i] - log_probability;
states[i]->frameEMAccPosteriors(f,inputs->frames[f],log_posterior_i_f);
}
}
}
for (int f=1;f<inputs->n_frames;f++) {
for (int i=1;i<n_states-1;i++) {
real log_emit_i = states[i]->log_probabilities->frames[f][0];
int model_to = states_to_model[i];
int state_to = states_to_model_states[i];
for (int j=1;j<n_states;j++) {
if (log_transitions[i][j] == LOG_ZERO || log_alpha->frames[f-1][j] == LOG_ZERO || log_beta->frames[f][i] == LOG_ZERO || log_emit_i == LOG_ZERO)
continue;
// find the real transition
int model_from = states_to_model[j];
int state_from = states_to_model_states[j];
if (model_from == model_to) {
models[model_from]->transitions_acc[state_to][state_from] +=
exp(log_posterior + log_alpha->frames[f-1][j] +
log_transitions[i][j] +
log_emit_i + log_beta->frames[f][i] - log_probability);
} else {
int last_state_from = models[model_from]->n_states-1;
models[model_from]->transitions_acc[last_state_from][state_from] +=
exp(log_posterior + log_alpha->frames[f-1][j] +
models[model_from]->log_transitions[last_state_from][state_from] +
log_emit_i + log_beta->frames[f][i] - log_probability);
models[model_to]->transitions_acc[state_to][0] +=
exp(log_posterior + log_alpha->frames[f-1][j] +
models[model_to]->log_transitions[state_to][0] +
log_emit_i + log_beta->frames[f][i] - log_probability);
}
}
}
}
// particular case of transitions from initial state
for (int j=1;j<n_states-1;j++) {
if (log_transitions[j][0] == LOG_ZERO || log_beta->frames[0][j] == LOG_ZERO)
continue;
int model_to = states_to_model[j];
int state_to = states_to_model_states[j];
real log_emit_j = states[j]->log_probabilities->frames[0][0];
models[model_to]->transitions_acc[state_to][0] +=
exp(log_posterior + log_beta->frames[0][j] + log_emit_j +
models[model_to]->log_transitions[state_to][0] -
log_probability);
}
// particular case of transitions to last state
int f = inputs->n_frames-1;
int i = n_states-1;
for (int j=1;j<n_states-1;j++) {
if (log_transitions[i][j] == LOG_ZERO || log_alpha->frames[f][j] == LOG_ZERO)
continue;
int model_from = states_to_model[j];
int state_from = states_to_model_states[j];
int last_state_from = models[model_from]->n_states-1;
models[model_from]->transitions_acc[last_state_from][state_from] +=
exp(log_posterior + log_alpha->frames[f][j] +
models[model_from]->log_transitions[last_state_from][state_from] -
log_probability);
}
}
void SpeechHMM::viterbiAccPosteriors(Sequence *inputs, real log_posterior)
{
// accumulate the emission and transition posteriors
real p = exp(log_posterior);
for (int f=0;f<inputs->n_frames;f++) {
int i = (int)viterbi_sequence->frames[f][0];
if (i>=0) {
int model_to = states_to_model[i];
int state_to = states_to_model_states[i];
states[i]->frameEMAccPosteriors(f, inputs->frames[f], log_posterior);
int j = (int)arg_viterbi->frames[f][i];
// find the real transition
if (j>=0) {
int model_from = states_to_model[j];
int state_from = states_to_model_states[j];
if (model_from == model_to) {
models[model_from]->transitions_acc[state_to][state_from] += p;
} else {
int last_state_from = models[model_from]->n_states-1;
models[model_from]->transitions_acc[last_state_from][state_from] += p;
models[model_to]->transitions_acc[state_to][0] += p;
}
}
}
}
}
void SpeechHMM::eMUpdate()
{
// for each model
for (int i=0;i<n_models;i++) {
models[i]->eMUpdate();
}
}
void SpeechHMM::backward(Sequence *inputs, Sequence *alpha)
{
// compute the beta by backward recursion
logBeta(inputs);
// accumulate the emission and transition posteriors
for (int f=0;f<inputs->n_frames;f++) {
for (int i=1;i<n_states-1;i++) {
if (log_alpha->frames[f][i] != LOG_ZERO &&
log_beta->frames[f][i] != LOG_ZERO) {
real posterior_i_f = *alpha->frames[0] * exp(log_alpha->frames[f][i] +
log_beta->frames[f][i] - log_probability);
states[i]->frameBackward(f,inputs->frames[f],NULL,NULL,&posterior_i_f);
}
}
}
for (int f=1;f<inputs->n_frames;f++) {
for (int i=1;i<n_states-1;i++) {
real log_emit_i = states[i]->log_probabilities->frames[f][0];
int model_to = states_to_model[i];
int state_to = states_to_model_states[i];
for (int j=1;j<n_states;j++) {
if (log_transitions[i][j] == LOG_ZERO ||
log_alpha->frames[f-1][j] == LOG_ZERO ||
log_beta->frames[f][i] == LOG_ZERO)
continue;
int model_from = states_to_model[j];
int state_from = states_to_model_states[j];
if (model_from == model_to) {
real posterior_i_j_f = *alpha->frames[0] * exp(log_alpha->frames[f-1][j] +
log_transitions[i][j] + log_emit_i + log_beta->frames[f][i] -
log_probability);
models[model_from]->dlog_transitions[state_to][state_from] +=
posterior_i_j_f;
for (int k=1;k<n_states;k++) {
if (log_transitions[k][j] == LOG_ZERO)
continue;
models[model_from]->dlog_transitions[state_to][state_from] -=
posterior_i_j_f * exp(log_transitions[k][j]);
}
} else {
int last_state_from = models[model_from]->n_states-1;
real posterior_i_j_f_from = *alpha->frames[0] * exp(log_alpha->frames[f-1][j] +
models[model_from]->log_transitions[last_state_from][state_from] +
log_emit_i + log_beta->frames[f][i] - log_probability);
real posterior_i_j_f_to = *alpha->frames[0] * exp(log_alpha->frames[f-1][j] +
models[model_to]->log_transitions[state_to][0] +
log_emit_i + log_beta->frames[f][i] - log_probability);
models[model_from]->dlog_transitions[last_state_from][state_from] +=
posterior_i_j_f_from;
for (int k=1;k<n_states;k++) {
if (log_transitions[k][j] == LOG_ZERO)
continue;
models[model_from]->dlog_transitions[last_state_from][state_from] -=
posterior_i_j_f_from * exp(models[model_from]->log_transitions[last_state_from][state_from]);
models[model_to]->dlog_transitions[state_to][0] -=
posterior_i_j_f_to * exp(models[model_to]->log_transitions[state_to][0]);
}
}
}
}
}
// particular case of transitions from initial state
for (int j=1;j<n_states-1;j++) {
if (log_transitions[j][0] == LOG_ZERO)
continue;
int model_to = states_to_model[j];
int state_to = states_to_model_states[j];
real log_emit_j = models[model_to]->states[state_to]->log_probabilities->frames[0][0];
real posterior_i_j_f = *alpha->frames[0] * exp(log_beta->frames[0][j] +
log_emit_j + models[model_to]->log_transitions[state_to][0] -
log_probability);
models[model_to]->dlog_transitions[state_to][0] += posterior_i_j_f;
for (int k=1;k<n_states-1;k++) {
if (log_transitions[k][0] == LOG_ZERO)
continue;
int k_model_to = states_to_model[k];
int k_state_to = states_to_model_states[k];
models[k_model_to]->dlog_transitions[k_state_to][0] -=
posterior_i_j_f * exp(models[k_model_to]->log_transitions[k_state_to][0]);
}
}
// particular case of transitions to last state
int f = inputs->n_frames-1;
int i = n_states-1;
for (int j=1;j<n_states-1;j++) {
if (log_transitions[i][j] == LOG_ZERO ||
log_alpha->frames[f][j] == LOG_ZERO)
continue;
int model_from = states_to_model[j];
int state_from = states_to_model_states[j];
int last_state_from = models[model_from]->n_states-1;
real posterior_i_j_f = *alpha->frames[0] * exp(log_alpha->frames[f][j] +
models[model_from]->log_transitions[last_state_from][state_from] -
log_probability);
models[model_from]->dlog_transitions[last_state_from][state_from] +=
posterior_i_j_f;
for (int k=1;k<n_states-1;k++) {
if (log_transitions[k][j] == LOG_ZERO)
continue;
int k_model_from = states_to_model[k];
int k_state_from = states_to_model_states[k];
int k_last_state_from = models[k_model_from]->n_states-1;
models[k_model_from]->dlog_transitions[k_last_state_from][k_state_from] -=
posterior_i_j_f * exp(models[k_model_from]->log_transitions[k_last_state_from][k_state_from]);
}
}
}
SpeechHMM::~SpeechHMM()
{
}
}
|