1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
|
// Copyright (C) 2003--2004 Darren Moore (moore@idiap.ch)
//
// This file is part of Torch 3.1.
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// 3. The name of the author may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
// IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
// OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
// IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
// NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
// THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "Allocator.h"
#include "SpeechMLP.h"
#include "Tanh.h"
#include "Sigmoid.h"
#include "SoftMax.h"
#include "LogSoftMax.h"
#include "DiskXFile.h"
#include "string_stuff.h"
namespace Torch {
SpeechMLP::SpeechMLP( char *quicknet_mlpw_filename , int n_cw_vecs_ ,
char *quicknet_norms_filename , bool online_norm_ ,
real alpha_m_ , real alpha_v_ , bool lna8_outputs_ )
{
DiskXFile *mlpw_fd ;
int magic , ver_code , net_type , n_layers_ , n_sections ;
int sec_type , n_weights , data_type , bytes_per_weight , exponent ;
int *n_units ;
bool type_is_float ;
real *hid_weights=NULL , *hid_bias=NULL , *out_weights=NULL , *out_bias=NULL , *real_ptr ;
void *vals ;
MLPNonLinTransformType nl_type ;
#ifdef DEBUG
if ( (sizeof(int) != 4) || (sizeof(float) != 4) || (sizeof(double) != 8) ||
(sizeof(short) != 2) )
error("SpeechMLP::SpeechMLP(2) - data types are not expected sizes\n") ;
#endif
lna8_outputs = lna8_outputs_ ;
n_cw_vecs = n_cw_vecs_ ;
if ( (n_cw_vecs % 2) == 0 )
error("SpeechMLP::SpeechMLP(2) - n_cw_vecs is not odd\n") ;
mlpw_fd = new DiskXFile( quicknet_mlpw_filename , "r" ) ;
// Read the magic number and make sure that it is ok
if ( mlpw_fd->read( &magic , sizeof(int) , 1 ) != 1 )
error("SpeechMLP::SpeechMLP(2) - error reading magic number\n") ;
if ( magic != 0x4d4c5057 )
error("SpeechMLP::SpeechMLP(2) - magic number 0x%X incorrect\n",magic) ;
// Read the version code and ignore
if ( mlpw_fd->read( &ver_code , sizeof(int) , 1 ) != 1 )
error("SpeechMLP::SpeechMLP(2) - error reading version code\n") ;
// Read the net type
if ( mlpw_fd->read( &net_type , sizeof(int) , 1 ) != 1 )
error("SpeechMLP::SpeechMLP(2) - error reading net type code\n") ;
// Interpret the net type according to the QuickNet "QN_MLPW_ntype" enumeration
if ( (net_type == 0) || (net_type == 3) )
nl_type = MLP_NONE ;
else if ( net_type == 1 )
nl_type = MLP_SOFTMAX ;
else if ( net_type == 2 )
nl_type = MLP_SIGMOID ;
else
nl_type = MLP_SOFTMAX ; // default MLPW nettype
// Read the number of layers in the neural network
if ( mlpw_fd->read( &n_layers_ , sizeof(int) , 1 ) != 1 )
error("SpeechMLP::SpeechMLP(2) - error reading number of layers code\n") ;
// We assume that the number of layers will be 3
if ( n_layers_ != 3 )
error("SpeechMLP::SpeechMLP(2) - number of layers is not 3\n") ;
n_units = (int *)Allocator::sysAlloc( n_layers_ * sizeof(int) ) ;
// Read the number of sections in the neural network
if ( mlpw_fd->read( &n_sections , sizeof(int) , 1 ) != 1 )
error("SpeechMLP::SpeechMLP(2) - error reading number of sections\n") ;
// We assume that the number of sections will be 4
if ( n_sections != 4 )
error("SpeechMLP::SpeechMLP(2) - number of sections is not 4\n") ;
// Read the number of units in each layer of the network
for ( int i=0 ; i<n_layers_ ; i++ )
{
if ( mlpw_fd->read( n_units+i , sizeof(int) , 1 ) != 1 )
error("SpeechMLP::SpeechMLP(2) - error reading number of units in %dth layer\n",i) ;
}
// We have read all of the information required to "Create" the neural net.
// QuickNet neural nets always use a Sigmoid transformation in the hidden layer.
createMLP( n_units[0] , n_units[1] , n_units[2] , MLP_SIGMOID , nl_type ) ;
// Now read the data for each section
for ( int i=0 ; i<n_sections ; i++ )
{
// Read and process the header information
// Section Type
if ( mlpw_fd->read( &sec_type , sizeof(int) , 1 ) != 1 )
error("SpeechMLP::SpeechMLP(2) - error reading section type\n") ;
// Number of weights in the section
if ( mlpw_fd->read( &n_weights , sizeof(int) , 1 ) != 1 )
error("SpeechMLP::SpeechMLP(2) - error reading number of weights\n") ;
// Read the 'datatype' field and determine what the data type is
if ( mlpw_fd->read( &data_type , sizeof(int) , 1 ) != 1 )
error("SpeechMLP::SpeechMLP(2) - error reading data type\n") ;
if ( data_type > 32 )
{
// The data type is a floating point type
type_is_float = true ;
bytes_per_weight = data_type - 32 ;
if ( (bytes_per_weight != 4) && (bytes_per_weight != 8) )
error("SpeechMLP::SpeechMLP(2) - invalid bytes_per_weight for float type\n") ;
}
else
{
type_is_float = false ;
bytes_per_weight = data_type ;
if ( (bytes_per_weight != 1) && (bytes_per_weight != 2) && (bytes_per_weight != 4) )
error("SpeechMLP::SpeechMLP(2) - invalid bytes_per_weight for fixed type\n") ;
// The data type is fixed point - read the 'exponent value'
if ( mlpw_fd->read( &exponent , sizeof(int) , 1 ) != 1 )
error("SpeechMLP::SpeechMLP(2) - error reading fixed point exponent\n") ;
}
// Allocate a temporary place to store values read from file
vals = Allocator::sysAlloc( n_weights * bytes_per_weight ) ;
// Now read the weights themselves
if ( mlpw_fd->read( vals , bytes_per_weight , n_weights ) != n_weights )
error("SpeechMLP::SpeechMLP(2) - error reading weights\n") ;
switch( sec_type )
{
// Interpret the section type as per the QuickNet QN_SectionSelector enumeration.
case 0:
// Input-hidden layer weights.
// First check that the total number of weights is correct
if ( n_weights != (n_units[0] * n_units[1]) )
{
error( "SpeechMLP::SpeechMLP(2) - n_weights=%d wrong for inp-hid weights\n" ,
n_weights ) ;
}
if ( hid_weights != NULL )
error( "SpeechMLP::SpeechMLP(2) - duplicate hidden layer weights section\n" ) ;
// Allocate an array of floats to store the weights
hid_weights = (real *)Allocator::sysAlloc( n_weights * sizeof(real) ) ;
// Convert the weights to real format
convertWeightsToReal( n_weights , bytes_per_weight , type_is_float , exponent ,
vals , hid_weights ) ;
break ;
case 1:
// Hidden layer bias.
// First check that the total number of weights is correct
if ( n_weights != n_units[1] )
{
error( "SpeechMLP::SpeechMLP(2) - n_weights=%d wrong for hid bias weights\n" ,
n_weights ) ;
}
if ( hid_bias != NULL )
error( "SpeechMLP::SpeechMLP(2) - duplicate hidden layer bias section\n" ) ;
// Allocate an array of floats to store the weights
hid_bias = (real *)Allocator::sysAlloc( n_weights * sizeof(real) ) ;
// Convert the weights to real format
convertWeightsToReal( n_weights , bytes_per_weight , type_is_float , exponent ,
vals , hid_bias ) ;
break ;
case 2:
// Hidden-output layer weights
// First check that the total number of weights is correct
if ( n_weights != (n_units[1] * n_units[2]) )
{
error( "SpeechMLP::SpeechMLP(2) - n_weights=%d wrong for hid-out weights\n" ,
n_weights ) ;
}
if ( out_weights != NULL )
error( "SpeechMLP::SpeechMLP(2) - duplicate output layer weights section\n" ) ;
// Allocate an array of floats to store the weights
out_weights = (real *)Allocator::sysAlloc( n_weights * sizeof(real) ) ;
// Convert the weights to real format
convertWeightsToReal( n_weights , bytes_per_weight , type_is_float , exponent ,
vals , out_weights ) ;
break ;
case 3:
// Output layer bias.
// First check that the total number of weights is correct
if ( n_weights != n_units[2] )
{
error( "SpeechMLP::SpeechMLP(2) - n_weights=%d wrong for out bias weights\n" ,
n_weights ) ;
}
if ( out_bias != NULL )
error( "SpeechMLP::SpeechMLP(2) - duplicate output layer bias section\n" ) ;
// Allocate an array of floats to store the weights
out_bias = (real *)Allocator::sysAlloc( n_weights * sizeof(real) ) ;
// Convert the weights to real format
convertWeightsToReal( n_weights , bytes_per_weight , type_is_float , exponent ,
vals , out_bias ) ;
break ;
default:
error("SpeechMLP::SpeechMLP(2) - invalid section type\n") ;
}
free( vals ) ;
}
// Make sure that we read all sections
if ( (hid_weights==NULL)||(hid_bias==NULL)||(out_weights==NULL)||(out_bias==NULL) )
error("SpeechMLP::SpeechMLP(2) - not all sections were read correctly\n") ;
// Now fill in the weights and biases of our hidden layer linear transform
real_ptr = hidden_layer_lin->params->data[0];
for ( int i=0 ; i<n_units[1]*n_units[0] ; i++ )
real_ptr[i] = hid_weights[i];
real_ptr += n_units[1]*n_units[0];
for ( int i=0 ; i<n_units[1] ; i++ )
real_ptr[i] = hid_bias[i];
// Now fill in the weights and biases of our output layer linear transform
real_ptr = output_layer_lin->params->data[0] ;
for ( int i=0 ; i<n_units[2]*n_units[1] ; i++ )
real_ptr[i] = out_weights[i];
real_ptr += n_units[2]*n_units[1];
for ( int i=0 ; i<n_units[1] ; i++ )
real_ptr[i] = out_bias[i];
free( n_units ) ;
free( hid_weights ) ;
free( hid_bias ) ;
free( out_weights ) ;
free( out_bias ) ;
delete mlpw_fd ;
// Check that the number of MLP inputs corresponds to the number of features and
// the context window size that we are using.
if ( (n_mlp_inputs % n_cw_vecs) != 0 )
error("SpeechMLP::SpeechMLP(2) - n_mlp_inputs is not a multiple of n_cw_vecs\n") ;
n_features = n_mlp_inputs / n_cw_vecs ;
// Allocate memory for the feature vectors in the context window.
// Create the 'List' object that can be passed to the 'forward' methods
mlp_input_seq = new Sequence(1, n_mlp_inputs);
context_window = mlp_input_seq->frames[0];
for ( int i=0 ; i<n_mlp_inputs ; i++ )
context_window[i] = 0.0 ;
// If a norms file was specified, read it
ftr_norms_means = NULL ;
ftr_norms_inv_stddevs = NULL ;
ftr_norms_vars = NULL ;
if ( (quicknet_norms_filename != NULL) && (strcmp(quicknet_norms_filename,"")!=0) )
loadFeatureNorms( quicknet_norms_filename ) ;
// Setup everything related to online normalisation of feature vectors
// ie. adapting the means & stddevs used for normalisation.
online_norm = online_norm_ ;
if ( online_norm==true )
{
if ( (quicknet_norms_filename==NULL) || (strcmp(quicknet_norms_filename,"")==0) )
error("SpeechMLP::SpeechMLP(2) - cannot do online norm without a norms file\n") ;
alpha_m = alpha_m_ ;
alpha_v = alpha_v_ ;
// Save the means and inv stddevs we read from file, so that we can re-init between
// input files.
orig_ftr_norms_means = (real *)Allocator::sysAlloc( n_features * sizeof(real) ) ;
orig_ftr_norms_inv_stddevs = (real *)Allocator::sysAlloc( n_features * sizeof(real) ) ;
orig_ftr_norms_vars = (real *)Allocator::sysAlloc( n_features * sizeof(real) ) ;
memcpy( orig_ftr_norms_means , ftr_norms_means , n_features*sizeof(real) ) ;
memcpy( orig_ftr_norms_inv_stddevs , ftr_norms_inv_stddevs , n_features*sizeof(real) ) ;
memcpy( orig_ftr_norms_vars , ftr_norms_vars , n_features*sizeof(real) ) ;
}
else
{
orig_ftr_norms_means = NULL ;
orig_ftr_norms_inv_stddevs = NULL ;
orig_ftr_norms_vars = NULL ;
}
}
void SpeechMLP::feedForwardOneFrame( real *features , real *mlp_outputs )
{
int x ;
// 'mlp_outputs' is assumed to be pre-allocated and assumed to have
// enough (ie. n_mlp_outputs) memory allocated.
// Do we have means and stddevs so that we can normalise the input
// feature vector ?
if ( ftr_norms_means != NULL )
normaliseFeatures( features ) ;
// Assemble the new context window.
// Shuffle the existing context window contents down to make room for the
// new input vector.
memmove( context_window , context_window+n_features ,
(n_mlp_inputs-n_features)*sizeof(real) ) ;
// Copy the new input feature vector
memcpy( context_window+((n_cw_vecs-1)*n_features) , features , n_features*sizeof(real) ) ;
// Calculate the output of the MLP
forward( mlp_input_seq ) ;
// Copy the outputs to the 'mlp_outputs' buffer.
memcpy( mlp_outputs , outputs->frames[0] , n_mlp_outputs*sizeof(real) ) ;
// Calculate the log of the output values if we haven't already get them from a
// LOG_SOFTMAX nonlinear output layer transformation
if ( output_nl_transf != MLP_LOGSOFTMAX )
{
for ( int i=0 ; i<n_mlp_outputs ; i++ )
{
if ( lna8_outputs == true )
{
x = (int)floor( -24.0 * log( mlp_outputs[i] + 1e-37 ) ) ;
if ( x > 255 ) x = 255 ;
if ( x < 0 ) x = 0 ;
mlp_outputs[i] = -((real)x + 0.5) / 24.0 ;
}
else
mlp_outputs[i] = log( mlp_outputs[i] ) ;
}
}
else if ( lna8_outputs == true )
{
for ( int i=0 ; i<n_mlp_outputs ; i++ )
{
x = (int)floor( -24.0 * mlp_outputs[i] ) ;
if ( x > 255 ) x = 255 ;
if ( x < 0 ) x = 0 ;
mlp_outputs[i] = -((real)x + 0.5) / 24.0 ;
}
}
}
void SpeechMLP::feedForward( int n_frames_ , real **features , int *n_out_frames ,
real ***mlp_outputs )
{
// Allocate memory for the MLP outputs here.
// The number of output frames is less than the number of input frames
// if the context window size is greater than 1 (we wait until we have
// a full context window before starting the MLP).
int j , start_index ;
if ( n_frames_ < n_cw_vecs )
error("SpeechMLP::feedForward - not enough input frames to fill context window\n") ;
*n_out_frames = n_frames_ - n_cw_vecs + 1 ;
*mlp_outputs = (real **)Allocator::sysAlloc( (*n_out_frames) * sizeof(real *) ) ;
// Initialise the context window and online normalisation.
start_index = initContextWindow( features ) ;
for ( j=0 ; j<(*n_out_frames) ; j++ )
{
(*mlp_outputs)[j] = (real *)Allocator::sysAlloc( n_mlp_outputs * sizeof(real) ) ;
feedForwardOneFrame( features[start_index++] , (*mlp_outputs)[j] ) ;
}
}
void SpeechMLP::convertWeightsToReal( int n_weights , int bytes_per_weight ,
bool weights_are_float , int exponent ,
void *inputs_ , real *outputs_ )
{
// If the inputs are fixed point, figure out how each value will be
// scaled using the exponent value.
real scale=0.0 ;
if ( weights_are_float == false )
{
if ( bytes_per_weight == 1 )
scale = (real)pow( 2.0 , exponent - 7 ) ;
else if ( bytes_per_weight == 2 )
scale = (real)pow( 2.0 , exponent - 15 ) ;
else if ( bytes_per_weight == 4 )
scale = (real)pow( 2.0 , exponent - 31 ) ;
else
scale = 0.0 ;
}
// Convert the input values.
for ( int j=0 ; j<n_weights ; j++ )
{
if ( weights_are_float == true )
{
if ( bytes_per_weight == 4 )
outputs_[j] = (real)((float *)inputs_)[j] ;
else if ( bytes_per_weight == 8 )
outputs_[j] = (real)((double *)inputs_)[j] ;
}
else
{
if ( bytes_per_weight == 1 )
outputs_[j] = scale * (int)(((char *)inputs_)[j]) ;
else if ( bytes_per_weight == 2 )
outputs_[j] = scale * (int)(((short *)inputs_)[j]) ;
else if ( bytes_per_weight == 4 )
outputs_[j] = scale * ((int *)inputs_)[j] ;
}
}
}
void SpeechMLP::createMLP( int n_inputs_ , int n_hidden_ , int n_outputs_ ,
MLPNonLinTransformType hidden_nl_transf_ ,
MLPNonLinTransformType output_nl_transf_ )
{
n_mlp_inputs = n_inputs_ ;
n_mlp_hidden = n_hidden_ ;
n_mlp_outputs = n_outputs_ ;
hidden_nl_transf = hidden_nl_transf_ ;
output_nl_transf = output_nl_transf_ ;
// Setup the linear transformation associated with the hidden layer.
hidden_layer_lin = new Linear( n_mlp_inputs , n_mlp_hidden ) ;
addFCL( hidden_layer_lin ) ;
// Setup the non-linear transformation associated with the hidden layer
// and connect it to the linear transformation.
switch ( hidden_nl_transf )
{
case MLP_TANH:
hidden_layer_nonlin = new Tanh( n_mlp_hidden ) ;
break ;
case MLP_SIGMOID:
hidden_layer_nonlin = new Sigmoid( n_mlp_hidden ) ;
break ;
case MLP_SOFTMAX:
hidden_layer_nonlin = new SoftMax( n_mlp_hidden ) ;
break ;
case MLP_LOGSOFTMAX:
hidden_layer_nonlin = new LogSoftMax( n_mlp_hidden ) ;
break ;
case MLP_NONE:
error("SpeechMLP::SpeechMLP - must have a hidden layer non-linear transformation\n") ;
break ;
default:
error("SpeechMLP::SpeechMLP - invalid hidden_nl_transf\n") ;
}
addFCL( hidden_layer_nonlin ) ;
// Setup the linear transformation associated with the output layer
output_layer_lin = new Linear( n_mlp_hidden , n_mlp_outputs ) ;
addFCL( output_layer_lin ) ;
// Setup the non-linear transformation associated with the output layer
// and connect it to the linear transformation.
switch ( output_nl_transf )
{
case MLP_TANH:
output_layer_nonlin = new Tanh( n_mlp_outputs ) ;
break ;
case MLP_SIGMOID:
output_layer_nonlin = new Sigmoid( n_mlp_outputs ) ;
break ;
case MLP_SOFTMAX:
output_layer_nonlin = new SoftMax( n_mlp_outputs ) ;
break ;
case MLP_LOGSOFTMAX:
output_layer_nonlin = new LogSoftMax( n_mlp_outputs ) ;
break ;
case MLP_NONE:
output_layer_nonlin = NULL ;
break ;
default:
error("SpeechMLP::SpeechMLP - invalid output_nl_transf\n") ;
}
if ( output_layer_nonlin != NULL )
addFCL( output_layer_nonlin ) ;
ConnectedMachine::build() ;
}
int SpeechMLP::initContextWindow( real **frames )
{
// There are assumed to be at least 'n_cw_vecs' frames in 'frames'.
// Copy the first '(n_cw_vecs-1)/2' vectors into 'context_window'
// and return the index into 'frames' for the next vector.
// (ie. the first vector we will input into the MLP)
// Reset the means, inv stddevs and vars used for feature normalisation
if ( online_norm == true )
{
memcpy( ftr_norms_means , orig_ftr_norms_means , n_features*sizeof(real) ) ;
memcpy( ftr_norms_inv_stddevs , orig_ftr_norms_inv_stddevs , n_features*sizeof(real) ) ;
memcpy( ftr_norms_vars , orig_ftr_norms_vars , n_features*sizeof(real) ) ;
}
for ( int i=1 ; i<n_cw_vecs ; i++ )
{
if ( ftr_norms_means != NULL )
normaliseFeatures( frames[i-1] ) ;
memcpy( context_window+(i*n_features) , frames[i-1] , n_features*sizeof(real) ) ;
}
return (n_cw_vecs-1) ;
}
void SpeechMLP::loadFeatureNorms( char *norms_filename )
{
FILE *norms_fd ;
char line[1000] , str[100] ;
int n_vals ;
// The input file is in the format as output by the QuickNet qnnorm utility.
if ( (norms_filename == NULL) || (strcmp(norms_filename,"")==0) )
return ;
if ( n_features <= 0 )
error("SpeechMLP::loadFeatureNorms - n_features not defined\n") ;
// Open the input file
if ( (norms_fd = fopen( norms_filename , "r" )) == NULL )
error("SpeechMLP::loadFeatureNorms - error opening norms file\n") ;
// Load the means header line "vec <num_features>" and check validity
fgets( line , 1000 , norms_fd ) ;
if ( sscanf( line , "%s %d" , str , &n_vals ) != 2 )
error("SpeechMLP::loadFeatureNorms - error reading means header line\n") ;
if ( (strcmp( str , "VEC" ) != 0) && (strcmp( str , "vec" ) != 0) )
error("SpeechMLP::loadFeatureNorms - VEC not found on means header line\n") ;
if ( n_vals != n_features )
error("SpeechMLP::loadFeatureNorms - feature vector size does not match norms file\n") ;
// Allocate memory for the means and inv stddevs
ftr_norms_means = (real *)Allocator::sysAlloc( n_features * sizeof(real) ) ;
ftr_norms_inv_stddevs = (real *)Allocator::sysAlloc( n_features * sizeof(real) ) ;
ftr_norms_vars = (real *)Allocator::sysAlloc( n_features * sizeof(real) ) ;
// Read in the means
for ( int i=0 ; i<n_vals ; i++ )
{
fgets( line , 1000 , norms_fd ) ;
#ifdef USE_DOUBLE
if ( sscanf( line , "%lf" , ftr_norms_means+i ) != 1 )
#else
if ( sscanf( line , "%f" , ftr_norms_means+i ) != 1 )
#endif
error("SpeechMLP::loadFeatureNorms - error reading means value\n") ;
}
// Read the inv stddevs header line
fgets( line , 1000 , norms_fd ) ;
if ( sscanf( line , "%s %d" , str , &n_vals ) != 2 )
error("SpeechMLP::loadFeatureNorms - error reading inv stddevs header line\n") ;
if ( (strcmp( str , "VEC" ) != 0) && (strcmp( str , "vec" ) != 0) )
error("SpeechMLP::loadFeatureNorms - VEC not found on inv stddevs header line\n") ;
if ( n_vals != n_features )
error("SpeechMLP::loadFeatureNorms - feature vector size does not match norms file\n") ;
// Read in the inv stddevs
for ( int i=0 ; i<n_vals ; i++ )
{
fgets( line , 1000 , norms_fd ) ;
#ifdef USE_DOUBLE
if ( sscanf( line , "%lf" , ftr_norms_inv_stddevs+i ) != 1 )
#else
if ( sscanf( line , "%f" , ftr_norms_inv_stddevs+i ) != 1 )
#endif
error("SpeechMLP::loadFeatureNorms - error reading inv stddev value\n") ;
ftr_norms_vars[i] = 1.0 / (ftr_norms_inv_stddevs[i] * ftr_norms_inv_stddevs[i]) ;
}
fclose( norms_fd ) ;
}
SpeechMLP::~SpeechMLP()
{
if ( hidden_layer_lin != NULL )
delete hidden_layer_lin ;
if ( hidden_layer_nonlin != NULL )
delete hidden_layer_nonlin ;
if ( output_layer_lin != NULL )
delete output_layer_lin ;
if ( output_layer_nonlin != NULL )
delete output_layer_nonlin ;
if ( ftr_norms_means != NULL )
free( ftr_norms_means ) ;
if ( ftr_norms_inv_stddevs != NULL )
free( ftr_norms_inv_stddevs ) ;
if ( ftr_norms_vars != NULL )
free( ftr_norms_vars ) ;
if ( orig_ftr_norms_means != NULL )
free( orig_ftr_norms_means ) ;
if ( orig_ftr_norms_vars != NULL )
free( orig_ftr_norms_vars ) ;
if ( orig_ftr_norms_inv_stddevs != NULL )
free( orig_ftr_norms_inv_stddevs ) ;
if ( mlp_input_seq != NULL )
delete mlp_input_seq ;
}
void SpeechMLP::normaliseFeatures( real *features )
{
real mean , var , x ;
for ( int i=0 ; i<n_features ; i++ )
{
if ( online_norm == true )
{
mean = ftr_norms_means[i] ;
var = ftr_norms_vars[i] ;
x = features[i] ;
// update recursive estimate of mean
mean = (1.0 - alpha_m) * mean + alpha_m * x ;
// subtract latest mean from the value
x -= mean ;
// update recursive estimate of variance
var = (1.0 - alpha_v) * var + alpha_v * x * x ;
// save the new bias and scale estimates (for the next frame)
ftr_norms_means[i] = mean ;
ftr_norms_vars[i] = var ;
ftr_norms_inv_stddevs[i] = 1.0 / sqrt(var) ;
x *= ftr_norms_inv_stddevs[i] ;
features[i] = x ;
}
else
{
// Subtract the mean
features[i] -= ftr_norms_means[i] ;
// Scale the difference by the inverse stddev
features[i] *= ftr_norms_inv_stddevs[i] ;
}
}
}
#ifdef DEBUG
void SpeechMLP::outputText()
{
real *real_ptr ;
printf("num input units = %d\n",n_mlp_inputs);
printf("num hidden units = %d\n",n_mlp_hidden);
printf("num output units = %d\n",n_mlp_outputs);
printf("\n");
printf("hidden layer non-linear transformation is: ");
switch ( hidden_nl_transf )
{
case MLP_TANH:
printf("TANH\n") ;
break ;
case MLP_SIGMOID:
printf("SIGMOID\n") ;
break ;
case MLP_SOFTMAX:
printf("SOFTMAX\n") ;
break ;
case MLP_LOGSOFTMAX:
printf("LOGSOFTMAX\n") ;
break ;
case MLP_NONE:
printf("NONE\n") ;
break ;
default:
printf("UNKNOWN!!\n") ;
}
printf("output layer non-linear transformation is: ");
switch ( output_nl_transf )
{
case MLP_TANH:
printf("TANH\n") ;
break ;
case MLP_SIGMOID:
printf("SIGMOID\n") ;
break ;
case MLP_SOFTMAX:
printf("SOFTMAX\n") ;
break ;
case MLP_LOGSOFTMAX:
printf("LOGSOFTMAX\n") ;
break ;
case MLP_NONE:
printf("NONE\n") ;
break ;
default:
printf("UNKNOWN!!\n") ;
}
printf("HIDDEN LAYER WEIGHTS\n\n") ;
if ( hidden_layer_lin != NULL )
{
real_ptr = hidden_layer_lin->params->data[0] ;
for ( int i=0 ; i<n_mlp_hidden ; i++ )
{
for ( int j=0 ; j<n_mlp_inputs ; j++ )
printf("%f\n",*(real_ptr++));
}
printf("\nHIDDEN LAYER BIASES\n\n") ;
for ( int i=0 ; i<n_mlp_hidden ; i++ )
printf("%f\n",*(real_ptr++));
}
if ( output_layer_lin != NULL )
{
printf("OUTPUT LAYER WEIGHTS\n\n") ;
real_ptr = output_layer_lin->params->data[0] ;
for ( int i=0 ; i<n_mlp_outputs ; i++ )
{
for ( int j=0 ; j<n_mlp_hidden ; j++ )
printf("%f\n",*(real_ptr++));
}
printf("\nOUTPUT LAYER BIASES\n\n") ;
for ( int i=0 ; i<n_mlp_outputs ; i++ )
printf("%f\n",*(real_ptr++));
}
fflush(stdout) ;
}
#endif
}
|