File: README

package info (click to toggle)
torch3 3.1-2.1
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd, squeeze, wheezy
  • size: 2,972 kB
  • ctags: 2,743
  • sloc: cpp: 24,245; python: 299; makefile: 153
file content (43 lines) | stat: -rw-r--r-- 1,468 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
---------------------------------------------------

Some examples to learn how to *program* in Torch3.
Of course you can use them without any changes,
but you will not use 1/10 of the library if you
don't want to code something!

kmeans.cc  : simple K-means models
gmm.cc     : simple Gaussians Mixtures Models
hmm.cc     : simple Hidden Markov Models (see speech and 
             decoder example for speech recognition)

---------------------------------------------------

You will find two examples of datasets in data/.
Torch3 is able to deal directly with gziped data,
but you can uncompress them if you want to have a
look. (Or do a zless, zcat, zmore).

---------------------------------------------------

Examples of command line:


echo "GMM"
./Linux_OPT_FLOAT/gmm -save gmm_model -one_file data/train.amat.gz

or
echo data/train.amat.gz>list;./Linux_OPT_FLOAT/gmm -save gmm_model list

./Linux_OPT_FLOAT/gmm --retrain gmm_model -one_file data/train.amat.gz
./Linux_OPT_FLOAT/gmm --test gmm_model -one_file data/test.amat.gz

echo "HMM"
./Linux_OPT_FLOAT/hmm -save hmm_model -one_file data/train.amat.gz
./Linux_OPT_FLOAT/hmm --retrain hmm_model -one_file data/train.amat.gz
./Linux_OPT_FLOAT/hmm --test hmm_model -one_file data/test.amat.gz

echo "KMeans"
./Linux_OPT_FLOAT/kmeans -save kmeans_model -one_file data/train.amat.gz
./Linux_OPT_FLOAT/kmeans --test kmeans_model -one_file data/test.amat.gz

---------------------------------------------------