1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
|
---------------------------------------------------
Some examples to learn how to *program* in Torch3.
Of course you can use them without any changes,
but you will not use 1/10 of the library if you
don't want to code something!
kmeans.cc : simple K-means models
gmm.cc : simple Gaussians Mixtures Models
hmm.cc : simple Hidden Markov Models (see speech and
decoder example for speech recognition)
---------------------------------------------------
You will find two examples of datasets in data/.
Torch3 is able to deal directly with gziped data,
but you can uncompress them if you want to have a
look. (Or do a zless, zcat, zmore).
---------------------------------------------------
Examples of command line:
echo "GMM"
./Linux_OPT_FLOAT/gmm -save gmm_model -one_file data/train.amat.gz
or
echo data/train.amat.gz>list;./Linux_OPT_FLOAT/gmm -save gmm_model list
./Linux_OPT_FLOAT/gmm --retrain gmm_model -one_file data/train.amat.gz
./Linux_OPT_FLOAT/gmm --test gmm_model -one_file data/test.amat.gz
echo "HMM"
./Linux_OPT_FLOAT/hmm -save hmm_model -one_file data/train.amat.gz
./Linux_OPT_FLOAT/hmm --retrain hmm_model -one_file data/train.amat.gz
./Linux_OPT_FLOAT/hmm --test hmm_model -one_file data/test.amat.gz
echo "KMeans"
./Linux_OPT_FLOAT/kmeans -save kmeans_model -one_file data/train.amat.gz
./Linux_OPT_FLOAT/kmeans --test kmeans_model -one_file data/test.amat.gz
---------------------------------------------------
|