1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
|
// Copyright (C) 2003--2004 Darren Moore (moore@idiap.ch)
//
// This file is part of Torch 3.1.
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// 3. The name of the author may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
// IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
// OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
// IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
// NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
// THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "Allocator.h"
#include "DecodingHMM.h"
#include "log_add.h"
namespace Torch {
DecodingHMM::DecodingHMM()
{
n_states = 0 ;
states = NULL ;
}
DecodingHMM::DecodingHMM( HMM *orig_model , short *emis_prob_vec_indices )
{
// We just want to extract only the bits of the 'HMM' instance
// that are required for decoding.
// We also want to associate a list of possible predecessor states
// with each state, as well as transition probabilities for each
// predecessor.
// This will replace the transition 2D-array used in HMM, which is
// general but not optimal for the varieties of HMM's used for speech
// recognition.
real *log_trans ;
short *neighbour_states ;
short n_neighbours=0 ;
if ( orig_model == NULL )
error("DecodingHMM::DecodingHMM - original HMM NULL\n") ;
log_trans = (real *)Allocator::sysAlloc( 1000 * sizeof(real) ) ;
neighbour_states = (short *)Allocator::sysAlloc( 1000 * sizeof(short) ) ;
n_states = (short)orig_model->n_states ;
// Allocate memory to hold the states
states = (DecodingHMMState **)Allocator::sysAlloc( n_states * sizeof(DecodingHMMState *) ) ;
// Create each state in turn.
for ( short i=0 ; i<n_states ; i++ )
{
states[i] = (DecodingHMMState *)Allocator::sysAlloc( sizeof(DecodingHMMState) ) ;
initState( states[i] , orig_model->states[i] , emis_prob_vec_indices[i] ) ;
}
// Now go through the log_transitions array in the HMM instance
// and extract only the non-zero transitions FROM this state.
for ( short from=0 ; from<n_states ; from++ )
{
n_neighbours = 0 ;
for ( short to=0 ; to<n_states ; to++ )
{
if ( orig_model->log_transitions[to][from] > LOG_ZERO )
{
log_trans[n_neighbours] = orig_model->log_transitions[to][from] ;
neighbour_states[n_neighbours++] = to ;
}
}
setupSuccessorStates( states[from] , n_neighbours , neighbour_states , log_trans ) ;
}
free( log_trans ) ;
free( neighbour_states ) ;
}
DecodingHMM::DecodingHMM( int n_models , DecodingHMM **models )
{
// This will take a list of smaller models and concatenate them
// into a single model.
// Typically used to form a word-level model from a collection
// of phoneme models.
mergeModels( n_models , models ) ;
}
DecodingHMM::DecodingHMM( short n_states_ , Distribution **states_ , real **log_trans_probs_ ,
short *emis_prob_vec_indices )
{
real *log_trans ;
short *neighbour_states , n_neighbours=0 ;
n_states = n_states_ ;
log_trans = (real *)Allocator::sysAlloc( 1000 * sizeof(real) ) ;
neighbour_states = (short *)Allocator::sysAlloc( 1000 * sizeof(short) ) ;
// Allocate memory to hold the states
states = (DecodingHMMState **)Allocator::sysAlloc( n_states * sizeof(DecodingHMMState *) ) ;
// Create each state in turn
for ( short i=0 ; i<n_states ; i++ )
{
states[i] = (DecodingHMMState *)Allocator::sysAlloc( sizeof(DecodingHMMState) ) ;
initState( states[i] , states_[i] , emis_prob_vec_indices[i] ) ;
}
// Now go through the log_transitions array in the HMM instance
// and extract only the non-zero transitions FROM this state.
for ( short from=0 ; from<n_states ; from++ )
{
n_neighbours = 0 ;
for ( short to=0 ; to<n_states ; to++ )
{
if ( log_trans_probs_[from][to] > LOG_ZERO )
{
log_trans[n_neighbours] = log_trans_probs_[from][to] ;
neighbour_states[n_neighbours++] = to ;
}
}
setupSuccessorStates( states[from] , n_neighbours , neighbour_states , log_trans ) ;
}
free( log_trans ) ;
free( neighbour_states ) ;
}
DecodingHMM::~DecodingHMM()
{
if ( states != NULL )
{
for ( short i=0 ; i<n_states ; i++ )
{
free( states[i]->successor_states ) ;
free( states[i]->suc_log_trans_probs ) ;
free( states[i] ) ;
}
free( states ) ;
}
}
void DecodingHMM::mergeModels( int n_models , DecodingHMM **models )
{
short index , prev_n_states , old_n_sucs ;
real old_prob ;
DecodingHMMState **new_states=NULL ;
if ( n_models > 1 )
{
mergeModels( n_models-1 , models+1 ) ;
// We now need to merge models[0] with the current contents of this instance
// into a model that has the initial state of model[0], emitting states of
// model[0], emitting states of this instance, final state of this instance.
prev_n_states = n_states ;
n_states += (models[0]->n_states - 2) ;
new_states = (DecodingHMMState **)Allocator::sysAlloc( n_states *
sizeof(DecodingHMMState *) ) ;
// Create new state instances corresponding to each state in the model we have
// to merge with (except the final state) and insert these at the start
// of the new array of states.
index = 0 ;
for ( short i=0 ; i<(models[0]->n_states-1) ; i++ )
{
new_states[index] =
(DecodingHMMState *)Allocator::sysAlloc( sizeof(DecodingHMMState) ) ;
initState( new_states[index] , models[0]->states[i]->distribution ,
models[0]->states[i]->emission_prob_vec_index ) ;
index++ ;
}
// Copy all existing states except the initial state into the correct positions
// at the end of the array of states and update their successor indices to
// reflect the new positions.
for ( short i=1 ; i<prev_n_states ; i++ )
{
new_states[index] = states[i] ;
// Update the state indices to match the combined model
for ( short j=0 ; j<new_states[index]->n_successors ; j++ )
new_states[index]->successor_states[j] += (models[0]->n_states - 2) ;
index++ ;
}
// Update the successor indices of the existing initial state of this instance
// to reflect the new state positions.
for ( short j=0 ; j<states[0]->n_successors ; j++ )
states[0]->successor_states[j] += (models[0]->n_states - 2) ;
// Now update the successor information for the states from the first model.
for ( short i=0 ; i<(models[0]->n_states-1) ; i++ )
{
// Copy the successor information
setupSuccessorStates( new_states[i] , models[0]->states[i]->n_successors ,
models[0]->states[i]->successor_states ,
models[0]->states[i]->suc_log_trans_probs ) ;
// Look at the last successor entry for each state. If it is the final
// state of the first model, remove the entry and replace it with the successors
// of the initial state of the second model.
old_prob = new_states[i]->suc_log_trans_probs[new_states[i]->n_successors-1] ;
old_n_sucs = new_states[i]->n_successors ;
if ( new_states[i]->successor_states[new_states[i]->n_successors-1] ==
(models[0]->n_states-1) )
{
new_states[i]->n_successors += (states[0]->n_successors - 1) ;
new_states[i]->successor_states = (short *)Allocator::sysRealloc(
new_states[i]->successor_states ,
new_states[i]->n_successors * sizeof(short) ) ;
new_states[i]->suc_log_trans_probs = (real *)Allocator::sysRealloc(
new_states[i]->suc_log_trans_probs ,
new_states[i]->n_successors * sizeof(real) ) ;
for ( short j=0 ; j<(states[0]->n_successors) ; j++ )
{
new_states[i]->successor_states[old_n_sucs+j-1] =
states[0]->successor_states[j] ;
new_states[i]->suc_log_trans_probs[old_n_sucs+j-1] = old_prob +
states[0]->suc_log_trans_probs[j] ;
}
}
}
if ( states[0]->successor_states != NULL )
free( states[0]->successor_states ) ;
if ( states[0]->suc_log_trans_probs != NULL )
free( states[0]->suc_log_trans_probs ) ;
free( states[0] ) ;
free( states ) ;
states = new_states ;
}
else if ( n_models == 1 )
{
// If we only have 1 model in the input array, just copy its contents
n_states = models[0]->n_states ;
states = (DecodingHMMState **)Allocator::sysAlloc( n_states * sizeof(DecodingHMMState *) ) ;
for ( short i=0 ; i<n_states ; i++ )
{
states[i] = (DecodingHMMState *)Allocator::sysAlloc( sizeof(DecodingHMMState) ) ;
initState( states[i] , models[0]->states[i]->distribution ,
models[0]->states[i]->emission_prob_vec_index ) ;
setupSuccessorStates( states[i] , models[0]->states[i]->n_successors ,
models[0]->states[i]->successor_states ,
models[0]->states[i]->suc_log_trans_probs ) ;
}
}
}
void DecodingHMM::initState( DecodingHMMState *state , Distribution *distribution_ ,
short emission_prob_vec_index_ )
{
state->distribution = distribution_ ;
state->emission_prob_vec_index = emission_prob_vec_index_ ;
state->n_successors = 0 ;
state->successor_states = NULL ;
state->suc_log_trans_probs = NULL ;
}
void DecodingHMM::setupSuccessorStates( DecodingHMMState *state , short n_successors_ ,
short *successor_states_ , real *log_trans_probs_ )
{
state->n_successors = n_successors_ ;
if ( n_successors_ > 0 )
{
state->successor_states = (short *)Allocator::sysAlloc( n_successors_ * sizeof(short) ) ;
state->suc_log_trans_probs = (real *)Allocator::sysAlloc( n_successors_ * sizeof(real) ) ;
for ( int i=0 ; i<n_successors_ ; i++ )
{
state->successor_states[i] = successor_states_[i] ;
state->suc_log_trans_probs[i] = log_trans_probs_[i] ;
}
}
}
#ifdef DEBUG
void DecodingHMM::outputText()
{
printf("DecodingHMM with %d states\n*************************\n" , n_states) ;
for ( int i=0 ; i<n_states ; i++ )
{
printf("State %d :\n" , i ) ;
printf("DecodingHMMState: n_sucs=%d ",states[i]->n_successors) ;
for ( int j=0 ; j<states[i]->n_successors ; j++ )
printf("%d ",states[i]->successor_states[j]) ;
printf(" ") ;
for ( int j=0 ; j<states[i]->n_successors ; j++ )
printf("%.20f ",states[i]->suc_log_trans_probs[j]) ;
printf("\n") ;
}
printf("\n") ;
}
#endif
}
|