1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
|
const char *help = "\
GMM (c) Samy Bengio & Co 2001\n\
\n\
This program is used to do decode simple speech recognition \n";
#include <torch/LexiconInfo.h>
#include <torch/EMTrainer.h>
#include <torch/HMM.h>
#include <torch/CmdLine.h>
#include <torch/Random.h>
#include <torch/DiskHTKDataSet.h>
#include <torch/HTKDataSet.h>
#include <torch/SimpleDecoderSpeechHMM.h>
#include <torch/WordSegMeasurer.h>
#include <torch/FrameSegMeasurer.h>
#include <torch/Grammar.h>
#include <torch/DiagonalGMM.h>
#include <torch/string_utils.h>
#include <torch/FileListCmdOption.h>
using namespace Torch;
#include "speech_include.cc"
int main(int argc, char **argv)
{
char* saved_model;
char* phoneme_name;
char* lex_name;
char* silence_name;
char* silence_phone;
char* sp_name;
char* sp_phone;
real log_word_entrance_penalty;
bool add_sil_to_targets;
bool no_self_transitions;
bool force;
int max_load;
char *dir_name;
bool htk_model;
bool disk;
bool isolated;
int min_duration;
bool confusion;
Allocator *allocator = new Allocator;
FileListCmdOption input_file_list("file name", "the list of inputs files or one data file");
input_file_list.isArgument(true);
FileListCmdOption target_file_list("file name", "the list of target files or one target file");
target_file_list.isArgument(true);
//===============================================================
//=================== The command-line ==========================
//===============================================================
// Construct the command line
CmdLine cmd;
// Put the help line at the beginning
cmd.info(help);
// Train mode
cmd.addText("\nArguments:");
cmd.addSCmdArg("saved_model", &saved_model, "the saved model");
cmd.addSCmdArg("phoneme_name", &phoneme_name, "the list of phonemes file");
cmd.addSCmdArg("lex_name", &lex_name, "the lexicon file");
cmd.addCmdOption(&input_file_list);
cmd.addCmdOption(&target_file_list);
cmd.addText("\nModel Options:");
cmd.addSCmdOption("-silence_word", &silence_name,"sil", "name of silence word");
cmd.addSCmdOption("-silence_phone", &silence_phone,"h#", "name of silence phone");
cmd.addSCmdOption("-sp_word", &sp_name,"", "name of short pause word");
cmd.addSCmdOption("-sp_phone", &sp_phone,"", "name of short pause phoneme");
cmd.addRCmdOption("-log_word_entrance_penalty", &log_word_entrance_penalty, -15., "log of the word entrance penalty");
cmd.addBCmdOption("-add_sil_to_targets", &add_sil_to_targets, false, "add silence at begining of targets");
cmd.addBCmdOption("-no_self_transitions", &no_self_transitions, false, "do not admit grammar self transitions");
cmd.addBCmdOption("-isolated", &isolated, false, "isolated word recognition");
cmd.addBCmdOption("-force", &force, false, "do a forced alignment decoding");
cmd.addICmdOption("-min_duration", &min_duration, -1, "use minimum duration models");
cmd.addText("\nMisc Options:");
cmd.addICmdOption("-load", &max_load, -1, "max number of examples to load for train");
cmd.addSCmdOption("-dir", &dir_name, ".", "directory to save measures");
cmd.addBCmdOption("-confusion", &confusion, false, "print confusion matrix");
cmd.addBCmdOption("-htk_model", &htk_model, false,"model file is in HTK format");
cmd.addBCmdOption("-disk", &disk, false, "keep data on disk");
// Read the command line
cmd.read(argc, argv);
cmd.setWorkingDirectory(dir_name);
DiskXFile::setBigEndianMode();
//====================================================================
//=================== Testing Mode =================================
//====================================================================
Random::seed();
// read lexicon
if (strlen(sp_phone) == 0) sp_phone = NULL;
if (strlen(silence_phone) == 0)
silence_phone = NULL;
LexiconInfo lex(phoneme_name,silence_phone,sp_phone,lex_name,"<s>","</s>",silence_name);
// create grammar
int n_words = lex.vocabulary->n_words;
int silence_word = lex.vocabulary->sil_index;
Grammar grammar(n_words+3);
grammar.words[0] = -1; // initial state
grammar.words[1] = silence_word; // initial silence
grammar.words[n_words+1] = silence_word; // final silence
grammar.words[n_words+2] = -1; // final state
int* gw = &grammar.words[2];
for (int i=0;i<n_words;i++) {
if (i != silence_word)
*gw++ = i;
}
grammar.transitions[1][0] = true;
for (int i=0;i<n_words-1;i++) {
grammar.transitions[i+2][1] = true;
grammar.transitions[n_words+1][i+2] = true;
if (!isolated) {
for (int j=0;j<n_words-1;j++)
if (!no_self_transitions || i!=j)
grammar.transitions[j+2][i+2] = true;
}
}
grammar.transitions[n_words+2][n_words+1] = true;
//====================================================================
//=================== Create the DataSet ... =========================
//====================================================================
// some basic tests on the files
if (input_file_list.n_files != target_file_list.n_files) {
error("the input and target files should have the same number of files (%d != %d)\n",input_file_list.n_files,target_file_list.n_files);
}
for (int i=0;i<input_file_list.n_files;i++) {
char* si = strRemoveSuffix(input_file_list.file_names[i]);
char* st = strRemoveSuffix(target_file_list.file_names[i]);
if (strcmp(strBaseName(si),strBaseName(st)))
warning("input file (%s) do not correspond to target file (%s)",input_file_list.file_names[i],target_file_list.file_names[i]);
free(si);
free(st);
}
DataSet* data;
int n_per_frame;
if (disk) {
data = (DataSet*)new(allocator) DiskHTKDataSet(input_file_list.file_names,target_file_list.file_names, input_file_list.n_files, true, max_load, &lex);
n_per_frame = ((DiskHTKDataSet*)data)->n_per_frame;
} else {
data = (DataSet*)new(allocator) HTKDataSet(input_file_list.file_names,target_file_list.file_names, input_file_list.n_files, true, max_load, &lex);
n_per_frame = ((HTKDataSet*)data)->n_per_frame;
}
//=================== Create the HMM... =========================
SpeechHMM* shmm = NULL;
if (htk_model)
shmm = newSpeechHMMFromHTK(saved_model,&lex,NULL,0,allocator);
else
shmm = newSpeechHMMFromTorch(saved_model,&lex,NULL,0,allocator,&cmd);
if (min_duration > 0) {
int silence_model = silence_phone ? lex.phone_info->getIndex(silence_phone) : -1;
shmm = extend_SpeechHMM_to_min_duration(shmm,min_duration,allocator,silence_model);
}
SimpleDecoderSpeechHMM dhmm(shmm,&grammar);
dhmm.setROption("log word entrance penalty",log_word_entrance_penalty);
dhmm.setBOption("forced alignment",force);
//=================== Measurers and Trainer ===============================
// Measurers on the training dataset
MeasurerList measurers;
WordSegMeasurer word_m(dhmm.wordseg,data,cmd.getXFile("decoder_word"),new(allocator)EditDistance(confusion));
word_m.setIOption("n per frame",n_per_frame);
word_m.setBOption("print timing",true);
measurers.addNode(&word_m);
FrameSegMeasurer frame_m(dhmm.frameseg,data,cmd.getXFile("decoder_frame"));
frame_m.setIOption("n per frame",n_per_frame);
frame_m.setBOption("print timing",true);
frame_m.setBOption("print desired timing",true);
frame_m.setBOption("print frame err",true);
measurers.addNode(&frame_m);
// The Gradient Machine Trainer
EMTrainer decoder(&dhmm);
//=================== Let's go... ===============================
decoder.decode(&measurers);
delete allocator;
return(0);
}
|