1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
|
# -*- coding: utf-8 -*-
#
# Copyright (C) 2006 Edgewall Software
# All rights reserved.
#
# This software is licensed as described in the file COPYING, which
# you should have received as part of this distribution. The terms
# are also available at http://trac.edgewall.com/license.html.
#
# This software consists of voluntary contributions made by many
# individuals. For the exact contribution history, see the revision
# history and logs, available at http://projects.edgewall.com/trac/.
from StringIO import StringIO
import unittest
from trac.db.sqlite_backend import _to_sql
from trac.test import EnvironmentStub, Mock
from tracspamfilter.model import schema
class BayesianFilterStrategyTestCase(unittest.TestCase):
def setUp(self):
self.env = EnvironmentStub(enable=[BayesianFilterStrategy])
self.env.config.set('spam-filter', 'bayes_karma', '10')
db = self.env.get_db_cnx()
cursor = db.cursor()
for table in schema:
for stmt in _to_sql(table):
cursor.execute(stmt)
self.strategy = BayesianFilterStrategy(self.env)
def test_karma_calculation_unsure(self):
bayes.Hammie = lambda x: Mock(score=lambda x: .5,
bayes=Mock(nham=1000, nspam=1000))
req = Mock(authname='anonymous', base_url='http://example.org/',
remote_addr='127.0.0.1')
self.assertEquals(None, self.strategy.test(req, 'John Doe', 'Spam'))
def test_karma_calculation_negative(self):
bayes.Hammie = lambda x: Mock(score=lambda x: .75,
bayes=Mock(nham=1000, nspam=1000))
req = Mock(authname='anonymous', base_url='http://example.org/',
remote_addr='127.0.0.1')
points, reasons = self.strategy.test(req, 'John Doe', 'Spam')
self.assertEquals(-5, points)
def test_karma_calculation_positive(self):
bayes.Hammie = lambda x: Mock(score=lambda x: .25,
bayes=Mock(nham=1000, nspam=1000))
req = Mock(authname='anonymous', base_url='http://example.org/',
remote_addr='127.0.0.1')
points, reasons = self.strategy.test(req, 'John Doe', 'Spam')
self.assertEquals(5, points)
def test_classifier_untrained(self):
req = Mock(authname='anonymous', base_url='http://example.org/',
remote_addr='127.0.0.1')
self.assertEqual(None, self.strategy.test(req, 'John Doe', 'Hammie'))
def test_classifier_basics(self):
req = Mock(authname='anonymous', base_url='http://example.org/',
remote_addr='127.0.0.1')
self.env.config.set('spam-filter', 'bayes_min_training', '1')
self.strategy.train(req, 'John Doe', 'Spam spam spammie', True)
self.strategy.train(req, 'John Doe', 'Ham ham hammie', False)
points, reasons = self.strategy.test(req, 'John Doe', 'Hammie')
assert points > 0, 'Expected positive karma'
points, reasons = self.strategy.test(req, 'John Doe', 'Spam')
assert points < 0, 'Expected negative karma'
try:
from tracspamfilter.filters import bayes
from tracspamfilter.filters.bayes import BayesianFilterStrategy
except ImportError:
# Skip tests if SpamBayes isn't installed
class BayesianFilterStrategyTestCase(object): pass
def suite():
suite = unittest.TestSuite()
suite.addTest(unittest.makeSuite(BayesianFilterStrategyTestCase, 'test'))
return suite
if __name__ == '__main__':
unittest.main(defaultTest='suite')
|