File: admin_bayes.html

package info (click to toggle)
trac-spamfilter 0.2.1%2Bsvn6871-1
  • links: PTS, VCS
  • area: main
  • in suites: lenny
  • size: 256 kB
  • ctags: 259
  • sloc: python: 1,683; cs: 341; makefile: 40
file content (83 lines) | stat: -rw-r--r-- 3,023 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
<!DOCTYPE html
    PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
    "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
      xmlns:xi="http://www.w3.org/2001/XInclude"
      xmlns:py="http://genshi.edgewall.org/">
  <xi:include href="admin.html" />
  <head>
    <title>Bayes</title>
    <script type="text/javascript">
      $(document).ready(function() {
        $("#reset").enable(${nham + nspam > 0 and 'true' or 'false'});
      });
    </script>
  </head>

  <body>
    <h2>Spam Filtering: Bayes</h2>

    <form class="mod" id="spamconfig" method="post">

      <fieldset>
        <legend>Configuration</legend>
        <p>The bayesian filter requires training before it can effectively
        differentiate between spam and ham. The training database currently
        contains <strong>${nspam} spam</strong> and
        <strong>${nham} ham</strong> submissions.</p>
        <div class="field">
          <label><input type="checkbox" id="reset" name="reset"
                        disabled="${nham + nspam == 0 or None}" />
            Clear training database
          </label>
          <p class="hint">
            Resetting the training database can help when training was incorrect
            and is producing bad results.
          </p>
        </div>
        <div class="field">
          <label>Minimum training required:
            <input type="text" id="min_training" name="min_training" size="3"
                   value="${min_training}" />
          </label>
          <p class="hint">
            The minimum number of spam and ham in the training database before
            the filter starts affecting the karma of submissions.
          </p>
        </div>
        <div class="buttons">
          <input type="submit" value="Apply changes" />
        </div>
      </fieldset>

      <fieldset>
        <legend>Training</legend>
        <p class="hint">
          While you can train the spam filter from the &ldquo;<em>Spam
          Filtering &rarr; Monitoring</em>&rdquo; panel in the web
          administration interface, you can also manually train the filter by
          entering samples here, or check what kind of spam probabilty
          currently gets assigned to the content.
        </p>
        <div class="field">
          <label for="content">Content:</label><br />
          <textarea id="content" name="content" rows="10" cols="60">
${content}</textarea>
        </div>
        <div py:if="content" class="field" py:choose="">
          <strong py:when="error">Error: ${error}</strong>
          <strong py:otherwise="">Score: ${round(score * 100, 2)}%</strong>
        </div>
        <div class="buttons">
          <input type="submit" name="test" value="Test"
                 disabled="${(not nham or not nspam) or None}" />
          <input type="submit" name="train" value="Train as Spam" />
          <input type="submit" name="train" value="Train as Ham" />
        </div>
      </fieldset>

    </form>

  </body>

</html>