1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
|
#include "ts/IpMap.h"
/** @file
IP address map support.
Provide the ability to create a range based mapping for the IP
address space. Addresses can be added and removed and each address
is associated with arbitrary client data.
@internal Don't bother to look at this code if you don't know how
a red/black tree works. There are so many good references on the
subject it's a waste to have some inferior version here. The
methods on @c Node follow the standard implementation except for
being parameterized by direction (so that, for instance, right
rotate and left rotate are both done by the @c rotate method with
a direction argument).
@section license License
Licensed to the Apache Software Foundation (ASF) under one
or more contributor license agreements. See the NOTICE file
distributed with this work for additional information
regarding copyright ownership. The ASF licenses this file
to you under the Apache License, Version 2.0 (the
"License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
// Validation / printing disabled until I figure out how to generalize so
// as to not tie reporting into a particular project environment.
/* @internal It is a bit ugly to store a @c sockaddr equivalent in the table
as all that is actually needed is the raw address. Unfortunately some clients
require a @c sockaddr* return via the iterator and that's expensive to
compute all the time. I should, at some point, re-examine this and see if we
can do better and have a more compact internal format. I suspect I did this
before we had IpAddr as a type.
*/
namespace ts
{
namespace detail
{
// Helper functions
inline int
cmp(sockaddr_in6 const &lhs, sockaddr_in6 const &rhs)
{
return memcmp(lhs.sin6_addr.s6_addr, rhs.sin6_addr.s6_addr, TS_IP6_SIZE);
}
/// Less than.
inline bool
operator<(sockaddr_in6 const &lhs, sockaddr_in6 const &rhs)
{
return ts::detail::cmp(lhs, rhs) < 0;
}
inline bool
operator<(sockaddr_in6 const *lhs, sockaddr_in6 const &rhs)
{
return ts::detail::cmp(*lhs, rhs) < 0;
}
/// Less than.
inline bool
operator<(sockaddr_in6 const &lhs, sockaddr_in6 const *rhs)
{
return ts::detail::cmp(lhs, *rhs) < 0;
}
/// Equality.
inline bool
operator==(sockaddr_in6 const &lhs, sockaddr_in6 const *rhs)
{
return ts::detail::cmp(lhs, *rhs) == 0;
}
/// Equality.
inline bool
operator==(sockaddr_in6 const *lhs, sockaddr_in6 const &rhs)
{
return ts::detail::cmp(*lhs, rhs) == 0;
}
/// Equality.
inline bool
operator==(sockaddr_in6 const &lhs, sockaddr_in6 const &rhs)
{
return ts::detail::cmp(lhs, rhs) == 0;
}
/// Less than or equal.
inline bool
operator<=(sockaddr_in6 const &lhs, sockaddr_in6 const *rhs)
{
return ts::detail::cmp(lhs, *rhs) <= 0;
}
/// Less than or equal.
inline bool
operator<=(sockaddr_in6 const &lhs, sockaddr_in6 const &rhs)
{
return ts::detail::cmp(lhs, rhs) <= 0;
}
/// Greater than or equal.
inline bool
operator>=(sockaddr_in6 const &lhs, sockaddr_in6 const &rhs)
{
return ts::detail::cmp(lhs, rhs) >= 0;
}
/// Greater than or equal.
inline bool
operator>=(sockaddr_in6 const &lhs, sockaddr_in6 const *rhs)
{
return ts::detail::cmp(lhs, *rhs) >= 0;
}
/// Greater than.
inline bool
operator>(sockaddr_in6 const &lhs, sockaddr_in6 const *rhs)
{
return ts::detail::cmp(lhs, *rhs) > 0;
}
/** Base template class for IP maps.
This class is templated by the @a N type which must be a subclass
of @c RBNode. This class carries information about the addresses stored
in the map. This includes the type, the common argument type, and
some utility methods to operate on the address.
*/
template <typename N ///< Node type.
>
struct IpMapBase {
friend class ::IpMap;
typedef IpMapBase self; ///< Self reference type.
typedef typename N::ArgType ArgType; ///< Import type.
typedef typename N::Metric Metric; ///< Import type.g482
IpMapBase() : _root(0) {}
~IpMapBase() { this->clear(); }
/** Mark a range.
All addresses in the range [ @a min , @a max ] are marked with @a data.
@return This object.
*/
self &mark(ArgType min, ///< Minimum value in range.
ArgType max, ///< Maximum value in range.
void *data = 0 ///< Client data payload.
);
/** Unmark addresses.
All addresses in the range [ @a min , @a max ] are cleared
(removed from the map), no longer marked.
@return This object.
*/
self &unmark(ArgType min, ArgType max);
/** Fill addresses.
This background fills using the range. All addresses in the
range that are @b not present in the map are added. No
previously present address is changed.
@note This is useful for filling in first match tables.
@return This object.
*/
self &fill(ArgType min, ArgType max, void *data = 0);
/** Test for membership.
@return @c true if the address is in the map, @c false if not.
If the address is in the map and @a ptr is not @c NULL, @c *ptr
is set to the client data for the address.
*/
bool contains(ArgType target, ///< Search target value.
void **ptr = 0 ///< Client data return.
) const;
/** Remove all addresses in the map.
@note This is much faster than using @c unmark with a range of
all addresses.
@return This object.
*/
self &clear();
/** Lower bound for @a target. @return The node whose minimum value
is the largest that is not greater than @a target, or @c NULL if
all minimum values are larger than @a target.
*/
N *lowerBound(ArgType target);
/** Insert @a n after @a spot.
Caller is responsible for ensuring that @a spot is in this container
and the proper location for @a n.
*/
void insertAfter(N *spot, ///< Node in list.
N *n ///< Node to insert.
);
/** Insert @a n before @a spot.
Caller is responsible for ensuring that @a spot is in this container
and the proper location for @a n.
*/
void insertBefore(N *spot, ///< Node in list.
N *n ///< Node to insert.
);
/// Add node @a n as the first node.
void prepend(N *n);
/// Add node @a n as the last node.
void append(N *n);
/// Remove a node.
void remove(N *n ///< Node to remove.
);
/** Validate internal data structures.
@note Intended for debugging, not general client use.
*/
void validate();
/// @return The number of distinct ranges.
size_t getCount() const;
/// Print all spans.
/// @return This map.
self &print();
// Helper methods.
N *
prev(RBNode *n) const
{
return static_cast<N *>(n->_prev);
}
N *
next(RBNode *n) const
{
return static_cast<N *>(n->_next);
}
N *
parent(RBNode *n) const
{
return static_cast<N *>(n->_parent);
}
N *
left(RBNode *n) const
{
return static_cast<N *>(n->_left);
}
N *
right(RBNode *n) const
{
return static_cast<N *>(n->_right);
}
N *
getHead()
{
return static_cast<N *>(_list.getHead());
}
N *
getTail()
{
return static_cast<N *>(_list.getTail());
}
N *_root; ///< Root node.
/// In order list of nodes.
/// For ugly compiler reasons, this is a list of base class pointers
/// even though we really store @a N instances on it.
typedef IntrusiveDList<RBNode, &RBNode::_next, &RBNode::_prev> NodeList;
/// This keeps track of all allocated nodes in order.
/// Iteration depends on this list being maintained.
NodeList _list;
};
template <typename N>
N *
IpMapBase<N>::lowerBound(ArgType target)
{
N *n = _root; // current node to test.
N *zret = 0; // best node so far.
while (n) {
if (target < n->_min)
n = left(n);
else {
zret = n; // this is a better candidate.
if (n->_max < target)
n = right(n);
else
break;
}
}
return zret;
}
template <typename N>
IpMapBase<N> &
IpMapBase<N>::clear()
{
// Delete everything.
N *n = static_cast<N *>(_list.getHead());
while (n) {
N *x = n;
n = next(n);
delete x;
}
_list.clear();
_root = 0;
return *this;
}
template <typename N>
IpMapBase<N> &
IpMapBase<N>::fill(ArgType rmin, ArgType rmax, void *payload)
{
// Rightmost node of interest with n->_min <= min.
N *n = this->lowerBound(rmin);
N *x = 0; // New node (if any).
// Need copies because we will modify these.
Metric min = N::deref(rmin);
Metric max = N::deref(rmax);
// Handle cases involving a node of interest to the left of the
// range.
if (n) {
if (n->_min < min) {
Metric min_1 = min;
N::dec(min_1); // dec is OK because min isn't zero.
if (n->_max < min_1) { // no overlap or adj.
n = next(n);
} else if (n->_max >= max) { // incoming range is covered, just discard.
return *this;
} else if (n->_data != payload) { // different payload, clip range on left.
min = n->_max;
N::inc(min);
n = next(n);
} else { // skew overlap with same payload, use node and continue.
x = n;
n = next(n);
}
}
} else {
n = this->getHead();
}
// Work through the rest of the nodes of interest.
// Invariant: n->_min >= min
// Careful here -- because max_plus1 might wrap we need to use it only
// if we can certain it didn't. This is done by ordering the range
// tests so that when max_plus1 is used when we know there exists a
// larger value than max.
Metric max_plus1 = max;
N::inc(max_plus1);
/* Notes:
- max (and thence max_plus1) never change during the loop.
- we must have either x != 0 or adjust min but not both.
*/
while (n) {
if (n->_data == payload) {
if (x) {
if (n->_max <= max) {
// next range is covered, so we can remove and continue.
this->remove(n);
n = next(x);
} else if (n->_min <= max_plus1) {
// Overlap or adjacent with larger max - absorb and finish.
x->setMax(n->_max);
this->remove(n);
return *this;
} else {
// have the space to finish off the range.
x->setMax(max);
return *this;
}
} else { // not carrying a span.
if (n->_max <= max) { // next range is covered - use it.
x = n;
x->setMin(min);
n = next(n);
} else if (n->_min <= max_plus1) {
n->setMin(min);
return *this;
} else { // no overlap, space to complete range.
this->insertBefore(n, new N(min, max, payload));
return *this;
}
}
} else { // different payload
if (x) {
if (max < n->_min) { // range ends before n starts, done.
x->setMax(max);
return *this;
} else if (max <= n->_max) { // range ends before n, done.
x->setMaxMinusOne(n->_min);
return *this;
} else { // n is contained in range, skip over it.
x->setMaxMinusOne(n->_min);
x = 0;
min = n->_max;
N::inc(min); // OK because n->_max maximal => next is null.
n = next(n);
}
} else { // no carry node.
if (max < n->_min) { // entirely before next span.
this->insertBefore(n, new N(min, max, payload));
return *this;
} else {
if (min < n->_min) { // leading section, need node.
N *y = new N(min, n->_min, payload);
y->decrementMax();
this->insertBefore(n, y);
}
if (max <= n->_max) // nothing past node
return *this;
min = n->_max;
N::inc(min);
n = next(n);
}
}
}
}
// Invariant: min is larger than any existing range maximum.
if (x) {
x->setMax(max);
} else {
this->append(new N(min, max, payload));
}
return *this;
}
template <typename N>
IpMapBase<N> &
IpMapBase<N>::mark(ArgType min, ArgType max, void *payload)
{
N *n = this->lowerBound(min); // current node.
N *x = 0; // New node, gets set if we re-use an existing one.
N *y = 0; // Temporary for removing and advancing.
// Several places it is handy to have max+1. Must be careful
// about wrapping.
Metric max_plus = N::deref(max);
N::inc(max_plus);
/* Some subtlety - for IPv6 we overload the compare operators to do
the right thing, but we can't overload pointer
comparisons. Therefore we carefully never compare pointers in
this logic. Only @a min and @a max can be pointers, everything
else is an instance or a reference. Since there's no good reason
to compare @a min and @a max this isn't particularly tricky, but
it's good to keep in mind. If we were somewhat more clever, we
would provide static less than and equal operators in the
template class @a N and convert all the comparisons to use only
those two via static function call.
*/
/* We have lots of special cases here primarily to minimize memory
allocation by re-using an existing node as often as possible.
*/
if (n) {
// Watch for wrap.
Metric min_1 = N::deref(min);
N::dec(min_1);
if (n->_min == min) {
// Could be another span further left which is adjacent.
// Coalesce if the data is the same. min_1 is OK because
// if there is a previous range, min is not zero.
N *p = prev(n);
if (p && p->_data == payload && p->_max == min_1) {
x = p;
n = x; // need to back up n because frame of reference moved.
x->setMax(max);
} else if (n->_max <= max) {
// Span will be subsumed by request span so it's available for use.
x = n;
x->setMax(max).setData(payload);
} else if (n->_data == payload) {
return *this; // request is covered by existing span with the same data
} else {
// request span is covered by existing span.
x = new N(min, max, payload); //
n->setMin(max_plus); // clip existing.
this->insertBefore(n, x);
return *this;
}
} else if (n->_data == payload && n->_max >= min_1) {
// min_1 is safe here because n->_min < min so min is not zero.
x = n;
// If the existing span covers the requested span, we're done.
if (x->_max >= max)
return *this;
x->setMax(max);
} else if (n->_max <= max) {
// Can only have left skew overlap, otherwise disjoint.
// Clip if overlap.
if (n->_max >= min)
n->setMax(min_1);
else if (next(n) && n->_max <= max) {
// request region covers next span so we can re-use that node.
x = next(n);
x->setMin(min).setMax(max).setData(payload);
n = x; // this gets bumped again, which is correct.
}
} else {
// Existing span covers new span but with a different payload.
// We split it, put the new span in between and we're done.
// max_plus is valid because n->_max > max.
N *r;
x = new N(min, max, payload);
r = new N(max_plus, n->_max, n->_data);
n->setMax(min_1);
this->insertAfter(n, x);
this->insertAfter(x, r);
return *this; // done.
}
n = next(n); // lower bound span handled, move on.
if (!x) {
x = new N(min, max, payload);
if (n)
this->insertBefore(n, x);
else
this->append(x); // note that since n == 0 we'll just return.
}
} else if (0 != (n = this->getHead()) && // at least one node in tree.
n->_data == payload && // payload matches
(n->_max <= max || n->_min <= max_plus) // overlap or adj.
) {
// Same payload with overlap, re-use.
x = n;
n = next(n);
x->setMin(min);
if (x->_max < max)
x->setMax(max);
} else {
x = new N(min, max, payload);
this->prepend(x);
}
// At this point, @a x has the node for this span and all existing spans of
// interest start at or past this span.
while (n) {
if (n->_max <= max) { // completely covered, drop span, continue
y = n;
n = next(n);
this->remove(y);
} else if (max_plus < n->_min) { // no overlap, done.
break;
} else if (n->_data == payload) { // skew overlap or adj., same payload
x->setMax(n->_max);
y = n;
n = next(n);
this->remove(y);
} else if (n->_min <= max) { // skew overlap different payload
n->setMin(max_plus);
break;
}
}
return *this;
}
template <typename N>
IpMapBase<N> &
IpMapBase<N>::unmark(ArgType min, ArgType max)
{
N *n = this->lowerBound(min);
N *x; // temp for deletes.
// Need to handle special case where first span starts to the left.
if (n && n->_min < min) {
if (n->_max >= min) { // some overlap
if (n->_max > max) {
// request span is covered by existing span - split existing span.
x = new N(max, N::argue(n->_max), n->_data);
x->incrementMin();
n->setMaxMinusOne(N::deref(min));
this->insertAfter(n, x);
return *this; // done.
} else {
n->setMaxMinusOne(N::deref(min)); // just clip overlap.
}
} // else disjoint so just skip it.
n = next(n);
}
// n and all subsequent spans start at >= min.
while (n) {
x = n;
n = next(n);
if (x->_max <= max) {
this->remove(x);
} else {
if (x->_min <= max) { // clip overlap
x->setMinPlusOne(N::deref(max));
}
break;
}
}
return *this;
}
template <typename N>
void
IpMapBase<N>::insertAfter(N *spot, N *n)
{
N *c = right(spot);
if (!c)
spot->setChild(n, N::RIGHT);
else
spot->_next->setChild(n, N::LEFT);
_list.insertAfter(spot, n);
_root = static_cast<N *>(n->rebalanceAfterInsert());
}
template <typename N>
void
IpMapBase<N>::insertBefore(N *spot, N *n)
{
N *c = left(spot);
if (!c)
spot->setChild(n, N::LEFT);
else
spot->_prev->setChild(n, N::RIGHT);
_list.insertBefore(spot, n);
_root = static_cast<N *>(n->rebalanceAfterInsert());
}
template <typename N>
void
IpMapBase<N>::prepend(N *n)
{
if (!_root)
_root = n;
else
_root = static_cast<N *>(_list.getHead()->setChild(n, N::LEFT)->rebalanceAfterInsert());
_list.prepend(n);
}
template <typename N>
void
IpMapBase<N>::append(N *n)
{
if (!_root)
_root = n;
else
_root = static_cast<N *>(_list.getTail()->setChild(n, N::RIGHT)->rebalanceAfterInsert());
_list.append(n);
}
template <typename N>
void
IpMapBase<N>::remove(N *n)
{
_root = static_cast<N *>(n->remove());
_list.take(n);
delete n;
}
template <typename N>
bool
IpMapBase<N>::contains(ArgType x, void **ptr) const
{
bool zret = false;
N *n = _root; // current node to test.
while (n) {
if (x < n->_min)
n = left(n);
else if (n->_max < x)
n = right(n);
else {
if (ptr)
*ptr = n->_data;
zret = true;
break;
}
}
return zret;
}
template <typename N>
size_t
IpMapBase<N>::getCount() const
{
return _list.getCount();
}
//----------------------------------------------------------------------------
template <typename N>
void
IpMapBase<N>::validate()
{
#if 0
if (_root) _root->validate();
for ( Node* n = _list.getHead() ; n ; n = n->_next ) {
Node* x;
if (0 != (x = n->_next)) {
if (x->_prev != n)
std::cout << "Broken list" << std::endl;
if (n->_max >= x->_min)
std::cout << "Out of order - " << n->_max << " > " << x->_min << std::endl;
if (n->_parent == n || n->_left == n || n->_right == n)
std::cout << "Looped node" << std::endl;
}
}
#endif
}
template <typename N>
IpMapBase<N> &
IpMapBase<N>::print()
{
#if 0
for ( Node* n = _list.getHead() ; n ; n = n->_next ) {
std::cout
<< n << ": " << n->_min << '-' << n->_max << " [" << n->_data << "] "
<< (n->_color == Node::BLACK ? "Black " : "Red ") << "P=" << n->_parent << " L=" << n->_left << " R=" << n->_right
<< std::endl;
}
#endif
return *this;
}
//----------------------------------------------------------------------------
typedef Interval<in_addr_t, in_addr_t> Ip4Span;
/** Node for IPv4 map.
We store the address in host order in the @a _min and @a _max
members for performance. We store copies in the @a _sa member
for API compliance (which requires @c sockaddr* access).
*/
class Ip4Node : public IpMap::Node, protected Ip4Span
{
friend struct IpMapBase<Ip4Node>;
public:
typedef Ip4Node self; ///< Self reference type.
/// Construct with values.
Ip4Node(ArgType min, ///< Minimum address (host order).
ArgType max, ///< Maximum address (host order).
void *data ///< Client data.
)
: Node(data), Ip4Span(min, max)
{
ats_ip4_set(ats_ip_sa_cast(&_sa._min), htonl(min));
ats_ip4_set(ats_ip_sa_cast(&_sa._max), htonl(max));
}
/// @return The minimum value of the interval.
virtual sockaddr const *
min() const
{
return ats_ip_sa_cast(&_sa._min);
}
/// @return The maximum value of the interval.
virtual sockaddr const *
max() const
{
return ats_ip_sa_cast(&_sa._max);
}
/// Set the client data.
self &
setData(void *data ///< Client data.
)
{
_data = data;
return *this;
}
protected:
/// Set the minimum value of the interval.
/// @return This interval.
self &
setMin(ArgType min ///< Minimum value (host order).
)
{
_min = min;
_sa._min.sin_addr.s_addr = htonl(min);
return *this;
}
/// Set the maximum value of the interval.
/// @return This interval.
self &
setMax(ArgType max ///< Maximum value (host order).
)
{
_max = max;
_sa._max.sin_addr.s_addr = htonl(max);
return *this;
}
/** Set the maximum value to one less than @a max.
@return This object.
*/
self &
setMaxMinusOne(ArgType max ///< One more than maximum value.
)
{
return this->setMax(max - 1);
}
/** Set the minimum value to one more than @a min.
@return This object.
*/
self &
setMinPlusOne(ArgType min ///< One less than minimum value.
)
{
return this->setMin(min + 1);
}
/** Decremement the maximum value in place.
@return This object.
*/
self &
decrementMax()
{
this->setMax(_max - 1);
return *this;
}
/** Increment the minimum value in place.
@return This object.
*/
self &
incrementMin()
{
this->setMin(_min + 1);
return *this;
}
/// Increment a metric.
static void
inc(Metric &m ///< Incremented in place.
)
{
++m;
}
/// Decrement a metric.
static void
dec(Metric &m ///< Decremented in place.
)
{
--m;
}
/// @return Dereferenced @a addr.
static Metric
deref(ArgType addr ///< Argument to dereference.
)
{
return addr;
}
/// @return The argument type for the @a metric.
static ArgType
argue(Metric const &metric)
{
return metric;
}
struct {
sockaddr_in _min;
sockaddr_in _max;
} _sa; ///< Addresses in API compliant form.
};
class Ip4Map : public IpMapBase<Ip4Node>
{
friend class ::IpMap;
};
//----------------------------------------------------------------------------
typedef Interval<sockaddr_in6> Ip6Span;
/** Node for IPv6 map.
*/
class Ip6Node : public IpMap::Node, protected Ip6Span
{
friend struct IpMapBase<Ip6Node>;
public:
typedef Ip6Node self; ///< Self reference type.
/// Override @c ArgType from @c Interval because the convention
/// is to use a pointer, not a reference.
typedef Metric const *ArgType;
/// Construct from pointers.
Ip6Node(ArgType min, ///< Minimum address (network order).
ArgType max, ///< Maximum address (network order).
void *data ///< Client data.
)
: Node(data), Ip6Span(*min, *max)
{
}
/// Construct with values.
Ip6Node(Metric const &min, ///< Minimum address (network order).
Metric const &max, ///< Maximum address (network order).
void *data ///< Client data.
)
: Node(data), Ip6Span(min, max)
{
}
/// @return The minimum value of the interval.
virtual sockaddr const *
min() const
{
return ats_ip_sa_cast(&_min);
}
/// @return The maximum value of the interval.
virtual sockaddr const *
max() const
{
return ats_ip_sa_cast(&_max);
}
/// Set the client data.
self &
setData(void *data ///< Client data.
)
{
_data = data;
return *this;
}
protected:
/// Set the minimum value of the interval.
/// @return This interval.
self &
setMin(ArgType min ///< Minimum value (host order).
)
{
ats_ip_copy(ats_ip_sa_cast(&_min), ats_ip_sa_cast(min));
return *this;
}
/// Set the minimum value of the interval.
/// @note Convenience overload.
/// @return This interval.
self &
setMin(Metric const &min ///< Minimum value (host order).
)
{
return this->setMin(&min);
}
/// Set the maximum value of the interval.
/// @return This interval.
self &
setMax(ArgType max ///< Maximum value (host order).
)
{
ats_ip_copy(ats_ip_sa_cast(&_max), ats_ip_sa_cast(max));
return *this;
}
/// Set the maximum value of the interval.
/// @note Convenience overload.
/// @return This interval.
self &
setMax(Metric const &max ///< Maximum value (host order).
)
{
return this->setMax(&max);
}
/** Set the maximum value to one less than @a max.
@return This object.
*/
self &
setMaxMinusOne(Metric const &max ///< One more than maximum value.
)
{
this->setMax(max);
dec(_max);
return *this;
}
/** Set the minimum value to one more than @a min.
@return This object.
*/
self &
setMinPlusOne(Metric const &min ///< One less than minimum value.
)
{
this->setMin(min);
inc(_min);
return *this;
}
/** Decremement the maximum value in place.
@return This object.
*/
self &
decrementMax()
{
dec(_max);
return *this;
}
/** Increment the mininimum value in place.
@return This object.
*/
self &
incrementMin()
{
inc(_min);
return *this;
}
/// Increment a metric.
static void
inc(Metric &m ///< Incremented in place.
)
{
uint8_t *addr = m.sin6_addr.s6_addr;
uint8_t *b = addr + TS_IP6_SIZE;
// Ripple carry. Walk up the address incrementing until we don't
// have a carry.
do {
++*--b;
} while (b > addr && 0 == *b);
}
/// Decrement a metric.
static void
dec(Metric &m ///< Decremented in place.
)
{
uint8_t *addr = m.sin6_addr.s6_addr;
uint8_t *b = addr + TS_IP6_SIZE;
// Ripple borrow. Walk up the address decrementing until we don't
// have a borrow.
do {
--*--b;
} while (b > addr && static_cast<uint8_t>(0xFF) == *b);
}
/// @return Dereferenced @a addr.
static Metric const &
deref(ArgType addr ///< Argument to dereference.
)
{
return *addr;
}
/// @return The argument type for the @a metric.
static ArgType
argue(Metric const &metric)
{
return &metric;
}
};
// We declare this after the helper operators and inside this namespace
// so that the template uses these for comparisons.
class Ip6Map : public IpMapBase<Ip6Node>
{
friend class ::IpMap;
};
}
} // end ts::detail
//----------------------------------------------------------------------------
IpMap::~IpMap()
{
delete _m4;
delete _m6;
}
inline ts::detail::Ip4Map *
IpMap::force4()
{
if (!_m4)
_m4 = new ts::detail::Ip4Map;
return _m4;
}
inline ts::detail::Ip6Map *
IpMap::force6()
{
if (!_m6)
_m6 = new ts::detail::Ip6Map;
return _m6;
}
bool
IpMap::contains(sockaddr const *target, void **ptr) const
{
bool zret = false;
if (AF_INET == target->sa_family) {
zret = _m4 && _m4->contains(ntohl(ats_ip4_addr_cast(target)), ptr);
} else if (AF_INET6 == target->sa_family) {
zret = _m6 && _m6->contains(ats_ip6_cast(target), ptr);
}
return zret;
}
bool
IpMap::contains(in_addr_t target, void **ptr) const
{
return _m4 && _m4->contains(ntohl(target), ptr);
}
IpMap &
IpMap::mark(sockaddr const *min, sockaddr const *max, void *data)
{
ink_assert(min->sa_family == max->sa_family);
if (AF_INET == min->sa_family) {
this->force4()->mark(ntohl(ats_ip4_addr_cast(min)), ntohl(ats_ip4_addr_cast(max)), data);
} else if (AF_INET6 == min->sa_family) {
this->force6()->mark(ats_ip6_cast(min), ats_ip6_cast(max), data);
}
return *this;
}
IpMap &
IpMap::mark(in_addr_t min, in_addr_t max, void *data)
{
this->force4()->mark(ntohl(min), ntohl(max), data);
return *this;
}
IpMap &
IpMap::unmark(sockaddr const *min, sockaddr const *max)
{
ink_assert(min->sa_family == max->sa_family);
if (AF_INET == min->sa_family) {
if (_m4)
_m4->unmark(ntohl(ats_ip4_addr_cast(min)), ntohl(ats_ip4_addr_cast(max)));
} else if (AF_INET6 == min->sa_family) {
if (_m6)
_m6->unmark(ats_ip6_cast(min), ats_ip6_cast(max));
}
return *this;
}
IpMap &
IpMap::unmark(in_addr_t min, in_addr_t max)
{
if (_m4)
_m4->unmark(ntohl(min), ntohl(max));
return *this;
}
IpMap &
IpMap::fill(sockaddr const *min, sockaddr const *max, void *data)
{
ink_assert(min->sa_family == max->sa_family);
if (AF_INET == min->sa_family) {
this->force4()->fill(ntohl(ats_ip4_addr_cast(min)), ntohl(ats_ip4_addr_cast(max)), data);
} else if (AF_INET6 == min->sa_family) {
this->force6()->fill(ats_ip6_cast(min), ats_ip6_cast(max), data);
}
return *this;
}
IpMap &
IpMap::fill(in_addr_t min, in_addr_t max, void *data)
{
this->force4()->fill(ntohl(min), ntohl(max), data);
return *this;
}
size_t
IpMap::getCount() const
{
size_t zret = 0;
if (_m4)
zret += _m4->getCount();
if (_m6)
zret += _m6->getCount();
return zret;
}
IpMap &
IpMap::clear()
{
if (_m4)
_m4->clear();
if (_m6)
_m6->clear();
return *this;
}
IpMap::iterator
IpMap::begin() const
{
Node *x = 0;
if (_m4)
x = _m4->getHead();
if (!x && _m6)
x = _m6->getHead();
return iterator(this, x);
}
IpMap::iterator &IpMap::iterator::operator++()
{
if (_node) {
// If we go past the end of the list see if it was the v4 list
// and if so, move to the v6 list (if it's there).
Node *x = static_cast<Node *>(_node->_next);
if (!x && _tree->_m4 && _tree->_m6 && _node == _tree->_m4->getTail())
x = _tree->_m6->getHead();
_node = x;
}
return *this;
}
inline IpMap::iterator &IpMap::iterator::operator--()
{
if (_node) {
// At a node, try to back up. Handle the case where we back over the
// start of the v6 addresses and switch to the v4, if there are any.
Node *x = static_cast<Node *>(_node->_prev);
if (!x && _tree->_m4 && _tree->_m6 && _node == _tree->_m6->getHead())
x = _tree->_m4->getTail();
_node = x;
} else if (_tree) {
// We were at the end. Back up to v6 if possible, v4 if not.
if (_tree->_m6)
_node = _tree->_m6->getTail();
if (!_node && _tree->_m4)
_node = _tree->_m4->getTail();
}
return *this;
}
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
|