File: MemSpan.h

package info (click to toggle)
trafficserver 9.2.5%2Bds-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 53,008 kB
  • sloc: cpp: 345,484; ansic: 31,134; python: 24,200; sh: 7,271; makefile: 3,045; perl: 2,261; java: 277; pascal: 119; sql: 94; xml: 2
file content (877 lines) | stat: -rw-r--r-- 21,627 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
/** @file

   Spans of writable memory. This is similar but independently developed from @c std::span. The goal
   is to provide convenient handling for chunks of memory. These chunks can be treated as arrays of
   arbitrary types via template methods.
*/

/* Licensed to the Apache Software Foundation (ASF) under one or more contributor license
   agreements.  See the NOTICE file distributed with this work for additional information regarding
   copyright ownership.  The ASF licenses this file to you under the Apache License, Version 2.0
   (the "License"); you may not use this file except in compliance with the License.  You may obtain
   a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software distributed under the License
   is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
   or implied. See the License for the specific language governing permissions and limitations under
   the License.
 */

#pragma once
#include <cstring>
#include <iosfwd>
#include <iostream>
#include <cstddef>
#include <string_view>
#include <type_traits>
#include <ratio>
#include <exception>

namespace ts
{
/** A span of contiguous piece of memory.

    A @c MemSpan does not own the memory to which it refers, it is simply a span of part of some
    (presumably) larger memory object. It acts as a pointer, not a container - copy and assignment
    change the span, not the memory to which the span refers.

    The purpose is that frequently code needs to work on a specific part of the memory. This can
    avoid copying or allocation by allocating all needed memory at once and then working with it via
    instances of this class.

 */
template <typename T> class MemSpan
{
  using self_type = MemSpan; ///< Self reference type.

protected:
  T *_ptr       = nullptr; ///< Pointer to base of memory chunk.
  size_t _count = 0;       ///< Number of elements.

public:
  using value_type = T;

  /// Default constructor (empty buffer).
  constexpr MemSpan() = default;

  /// Copy constructor.
  constexpr MemSpan(self_type const &that) = default;

  /** Construct from a first element @a start and a @a count of elements.
   *
   * @param start First element.
   * @param count Total number of elements.
   */
  constexpr MemSpan(value_type *start, size_t count);

  /** Construct from a half open range [start, last).
   *
   * @param start Start of range.
   * @param last Past end of range.
   */
  constexpr MemSpan(value_type *start, value_type *last);

  /** Construct to cover an array.
   *
   * @tparam N Number of elements in the array.
   * @param a The array.
   */
  template <size_t N> MemSpan(T (&a)[N]);

  /** Construct from nullptr.
      This implicitly makes the length 0.
  */
  constexpr MemSpan(std::nullptr_t);

  /** Equality.

      Compare the span contents.

      @return @c true if the contents of @a that are the same as the content of @a this,
      @c false otherwise.
   */
  bool operator==(self_type const &that) const;

  /** Identical.

      Check if the spans refer to the same span of memory.
      @return @c true if @a this and @a that refer to the same span, @c false if not.
   */
  bool is_same(self_type const &that) const;

  /** Inequality.
      @return @c true if @a that does not refer to the same span as @a this,
      @c false otherwise.
   */
  bool operator!=(self_type const &that) const;

  /// Assignment - the span is copied, not the content.
  self_type &operator=(self_type const &that) = default;

  /// Access element at index @a idx.
  T &operator[](size_t idx) const;

  /// Check for empty span.
  /// @return @c true if the span is empty (no contents), @c false otherwise.
  bool operator!() const;

  /// Check for non-empty span.
  /// @return @c true if the span contains bytes.
  explicit operator bool() const;

  /// Check for empty span (no content).
  /// @see operator bool
  bool empty() const;

  /// @name Accessors.
  //@{
  /// Pointer to the first element in the span.
  T *begin() const;

  /// Pointer to first element not in the span.
  T *end() const;

  /// Number of elements in the span
  size_t count() const;

  /// Number of bytes in the span.
  size_t size() const;

  /// Pointer to memory in the span.
  T *data() const;

  /** Make a copy of @a this span on the same memory but of type @a U.
   *
   * @tparam U Type for the created span.
   * @return A @c MemSpan which contains the same memory as instances of @a U.
   */
  template <typename U = void> MemSpan<U> rebind() const;

  /// Set the span.
  /// This is faster but equivalent to constructing a new span with the same
  /// arguments and assigning it.
  /// @return @c this.
  self_type &assign(T *ptr,      ///< Buffer start.
                    size_t count ///< # of elements.
  );

  /// Set the span.
  /// This is faster but equivalent to constructing a new span with the same
  /// arguments and assigning it.
  /// @return @c this.
  self_type &assign(T *first,     ///< First valid element.
                    T const *last ///< First invalid element.
  );

  /// Clear the span (become an empty span).
  self_type &clear();

  /// @return @c true if the byte at @a *p is in the span.
  bool contains(value_type const *p) const;

  /** Get the initial segment of @a count elements.

      @return An instance that contains the leading @a count elements of @a this.
  */
  self_type prefix(size_t count) const;

  /** Shrink the span by removing @a count leading elements.
   *
   * @param count The number of elements to remove.
   * @return @c *this
   */
  self_type &remove_prefix(size_t count);

  /** Get the trailing segment of @a count elements.
   *
   * @param count Number of elements to retrieve.
   * @return An instance that contains the trailing @a count elements of @a this.
   */
  self_type suffix(size_t count) const;

  /** Shrink the span by removing @a count trailing elements.
   *
   * @param count Number of elements to remove.
   * @return @c *this
   */
  self_type &remove_suffix(size_t count);

  /** Return a view of the memory.
   *
   * @return A @c string_view covering the span contents.
   */
  std::string_view view() const;

  template <typename U> friend class MemSpan;
};

/** Specialization for void pointers.
 *
 * Key differences:
 *
 * - No subscript operator.
 * - No array initialization.
 * - All other @c MemSpan types implicitly convert to this type.
 *
 * @internal I tried to be clever about the base template but there were too many differences
 * One major issue was the array initialization did not work at all if the @c void case didn't
 * exclude that. Once separate there are a number of useful tweaks available.
 */
template <> class MemSpan<void>
{
  using self_type = MemSpan; ///< Self reference type.
  template <typename U> friend class MemSpan;

public:
  using value_type = void; /// Export base type.

protected:
  value_type *_ptr = nullptr; ///< Pointer to base of memory chunk.
  size_t _size     = 0;       ///< Number of elements.

public:
  /// Default constructor (empty buffer).
  constexpr MemSpan() = default;

  /// Copy constructor.
  constexpr MemSpan(self_type const &that) = default;
  MemSpan &operator=(const MemSpan &) = default;

  /** Cross type copy constructor.
   *
   * @tparam U Type for source span.
   * @param that Source span.
   *
   * This enables any @c MemSpan to be automatically converted to a void span, just as any pointer
   * can convert to a void pointer.
   */
  template <typename U> constexpr MemSpan(MemSpan<U> const &that);

  /** Construct from a pointer @a start and a size @a n bytes.
   *
   * @param start Start of the span.
   * @param n # of bytes in the span.
   */
  constexpr MemSpan(value_type *start, size_t n);

  /** Construct from a half open range of [start, last).
   *
   * @param start Start of the range.
   * @param last Past end of range.
   */
  MemSpan(value_type *start, value_type *last);

  /** Construct from nullptr.
      This implicitly makes the length 0.
  */
  constexpr MemSpan(std::nullptr_t);

  /** Equality.

      Compare the span contents.

      @return @c true if the contents of @a that are bytewise the same as the content of @a this,
      @c false otherwise.
   */
  bool operator==(self_type const &that) const;

  /** Identical.

      Check if the spans refer to the same span of memory.

      @return @c true if @a this and @a that refer to the same memory, @c false if not.
   */
  bool is_same(self_type const &that) const;

  /** Inequality.
      @return @c true if @a that does not refer to the same span as @a this,
      @c false otherwise.
   */
  bool operator!=(self_type const &that) const;

  /// Assignment - the span is copied, not the content.
  /// Any type of @c MemSpan can be assigned to @c MemSpan<void>.
  template <typename U> self_type &operator=(MemSpan<U> const &that);

  /// Check for empty span.
  /// @return @c true if the span is empty (no contents), @c false otherwise.
  bool operator!() const;

  /// Check for non-empty span.
  /// @return @c true if the span contains bytes.
  explicit operator bool() const;

  /// Check for empty span (no content).
  /// @see operator bool
  bool empty() const;

  /// Number of bytes in the span.
  size_t size() const;

  /// Pointer to memory in the span.
  value_type *data() const;

  /// Pointer to memory in the span.
  value_type *data_end() const;

  /** Create a new span for a different type @a V on the same memory.
   *
   * @tparam V Type for the created span.
   * @return A @c MemSpan which contains the same memory as instances of @a V.
   */
  template <typename U> MemSpan<U> rebind() const;

  /// Set the span.
  /// This is faster but equivalent to constructing a new span with the same
  /// arguments and assigning it.
  /// @return @c this.
  self_type &assign(value_type *ptr, ///< Buffer start.
                    size_t n         ///< # of bytes
  );

  /// Set the span.
  /// This is faster but equivalent to constructing a new span with the same
  /// arguments and assigning it.
  /// @return @c this.
  self_type &assign(value_type *first,     ///< First valid element.
                    value_type const *last ///< First invalid element.
  );

  /// Clear the span (become an empty span).
  self_type &clear();

  /// @return @c true if the byte at @a *ptr is in the span.
  bool contains(value_type const *ptr) const;

  /** Get the initial segment of @a n bytes.

      @return An instance that contains the leading @a n bytes of @a this.
  */
  self_type prefix(size_t n) const;

  /** Shrink the span by removing @a n leading bytes.
   *
   * @param count The number of elements to remove.
   * @return @c *this
   */

  self_type &remove_prefix(size_t count);

  /** Get the trailing segment of @a n bytes.
   *
   * @param n Number of bytes to retrieve.
   * @return An instance that contains the trailing @a count elements of @a this.
   */
  self_type suffix(size_t n) const;

  /** Shrink the span by removing @a n bytes.
   *
   * @param n Number of bytes to remove.
   * @return @c *this
   */
  self_type &remove_suffix(size_t n);

  /** Return a view of the memory.
   *
   * @return A @c string_view covering the span contents.
   */
  std::string_view view() const;
};

// -- Implementation --

namespace detail
{
  /// Support pointer distance calculations for all types, @b include @c <void*>.
  /// This is useful in templates.
  inline size_t
  ptr_distance(void const *first, void const *last)
  {
    return static_cast<const char *>(last) - static_cast<const char *>(first);
  }

  template <typename T>
  size_t
  ptr_distance(T const *first, T const *last)
  {
    return last - first;
  }

  /** Functor to convert span types.
   *
   * @tparam T Source span type.
   * @tparam U Destination span type.
   *
   * @internal More void handling. This can't go in @c MemSpan because template specialization is
   * invalid in class scope and this needs to be specialized for @c void.
   */
  template <typename T, typename U> struct is_span_compatible {
    /// @c true if the size of @a T is an integral multiple of the size of @a U or vice versa.
    static constexpr bool value = std::ratio<sizeof(T), sizeof(U)>::num == 1 || std::ratio<sizeof(U), sizeof(T)>::num == 1;
    /** Compute the new size in units of @c sizeof(U).
     *
     * @param size Size in bytes.
     * @return Size in units of @c sizeof(U).
     *
     * The critical part of this is the @c static_assert that guarantees the result is an integral
     * number of instances of @a U.
     */
    static size_t count(size_t size);
  };

  template <typename T, typename U>
  size_t
  is_span_compatible<T, U>::count(size_t size)
  {
    if (size % sizeof(U)) {
      throw std::invalid_argument("MemSpan rebind where span size is not a multiple of the element size");
    }
    return size / sizeof(U);
  }

  /// @cond INTERNAL_DETAIL
  // Must specialize for rebinding to @c void because @c sizeof doesn't work. Rebinding from @c void
  // is handled by the @c MemSpan<void>::rebind specialization and doesn't use this mechanism.
  template <typename T> struct is_span_compatible<T, void> {
    static constexpr bool value = true;
    static size_t count(size_t size);
  };

  template <typename T>
  size_t
  is_span_compatible<T, void>::count(size_t size)
  {
    return size;
  }
  /// @endcond

} // namespace detail

// --- Standard memory operations ---

template <typename T>
int
memcmp(MemSpan<T> const &lhs, MemSpan<T> const &rhs)
{
  int zret = 0;
  size_t n = lhs.size();

  // Seems a bit ugly but size comparisons must be done anyway to get the memcmp args.
  if (lhs.count() < rhs.count()) {
    zret = 1;
  } else if (lhs.count() > rhs.count()) {
    zret = -1;
    n    = rhs.size();
  }
  // else the counts are equal therefore @a n and @a zret are already correct.

  int r = std::memcmp(lhs.data(), rhs.data(), n);
  if (0 != r) { // If we got a not-equal, override the size based result.
    zret = r;
  }

  return zret;
}

using std::memcmp;

template <typename T>
T *
memcpy(MemSpan<T> &dst, MemSpan<T> const &src)
{
  return static_cast<T *>(std::memcpy(dst.data(), src.data(), std::min(dst.size(), src.size())));
}

template <typename T>
T *
memcpy(MemSpan<T> &dst, T *src)
{
  return static_cast<T *>(std::memcpy(dst.data(), src, dst.size()));
}

template <typename T>
T *
memcpy(T *dst, MemSpan<T> &src)
{
  return static_cast<T *>(std::memcpy(dst, src.data(), src.size()));
}

inline char *
memcpy(MemSpan<char> &span, std::string_view view)
{
  return static_cast<char *>(std::memcpy(span.data(), view.data(), std::min(view.size(), view.size())));
}

inline void *
memcpy(MemSpan<void> &span, std::string_view view)
{
  return std::memcpy(span.data(), view.data(), std::min(view.size(), view.size()));
}

using std::memcpy;
using std::memcpy;

template <typename T>
inline MemSpan<T> const &
memset(MemSpan<T> const &dst, T const &t)
{
  for (auto &e : dst) {
    e = t;
  }
  return dst;
}

inline MemSpan<char> const &
memset(MemSpan<char> const &dst, char c)
{
  std::memset(dst.data(), c, dst.size());
  return dst;
}

inline MemSpan<unsigned char> const &
memset(MemSpan<unsigned char> const &dst, unsigned char c)
{
  std::memset(dst.data(), c, dst.size());
  return dst;
}

inline MemSpan<void> const &
memset(MemSpan<void> const &dst, char c)
{
  std::memset(dst.data(), c, dst.size());
  return dst;
}

using std::memset;

// --- MemSpan<T> ---

template <typename T> constexpr MemSpan<T>::MemSpan(T *ptr, size_t count) : _ptr{ptr}, _count{count} {}

template <typename T> constexpr MemSpan<T>::MemSpan(T *first, T *last) : _ptr{first}, _count{detail::ptr_distance(first, last)} {}

template <typename T> template <size_t N> MemSpan<T>::MemSpan(T (&a)[N]) : _ptr{a}, _count{N} {}

template <typename T> constexpr MemSpan<T>::MemSpan(std::nullptr_t) {}

template <typename T>
MemSpan<T> &
MemSpan<T>::assign(T *ptr, size_t count)
{
  _ptr   = ptr;
  _count = count;
  return *this;
}

template <typename T>
MemSpan<T> &
MemSpan<T>::assign(T *first, T const *last)
{
  _ptr   = first;
  _count = detail::ptr_distance(first, last);
  return *this;
}

template <typename T>
MemSpan<T> &
MemSpan<T>::clear()
{
  _ptr   = nullptr;
  _count = 0;
  return *this;
}

template <typename T>
bool
MemSpan<T>::is_same(self_type const &that) const
{
  return _ptr == that._ptr && _count == that._count;
}

template <typename T>
bool
MemSpan<T>::operator==(self_type const &that) const
{
  return _count == that._count && (_ptr == that._ptr || 0 == memcmp(_ptr, that._ptr, this->size()));
}

template <typename T>
bool
MemSpan<T>::operator!=(self_type const &that) const
{
  return !(*this == that);
}

template <typename T>
bool
MemSpan<T>::operator!() const
{
  return _count == 0;
}

template <typename T> MemSpan<T>::operator bool() const
{
  return _count != 0;
}

template <typename T>
bool
MemSpan<T>::empty() const
{
  return _count == 0;
}

template <typename T>
T *
MemSpan<T>::begin() const
{
  return _ptr;
}

template <typename T>
T *
MemSpan<T>::data() const
{
  return _ptr;
}

template <typename T>
T *
MemSpan<T>::end() const
{
  return _ptr + _count;
}

template <typename T>
T &
MemSpan<T>::operator[](size_t idx) const
{
  return _ptr[idx];
}

template <typename T>
size_t
MemSpan<T>::count() const
{
  return _count;
}

template <typename T>
size_t
MemSpan<T>::size() const
{
  return _count * sizeof(T);
}

template <typename T>
bool
MemSpan<T>::contains(T const *ptr) const
{
  return _ptr <= ptr && ptr < _ptr + _count;
}

template <typename T>
auto
MemSpan<T>::prefix(size_t count) const -> self_type
{
  return {_ptr, std::min(count, _count)};
}

template <typename T>
auto
MemSpan<T>::remove_prefix(size_t count) -> self_type &
{
  count = std::min(_count, count);
  _count -= count;
  _ptr += count;
  return *this;
}

template <typename T>
auto
MemSpan<T>::suffix(size_t count) const -> self_type
{
  count = std::min(_count, count);
  return {(_ptr + _count) - count, count};
}

template <typename T>
MemSpan<T> &
MemSpan<T>::remove_suffix(size_t count)
{
  _count -= std::min(count, _count);
  return *this;
}

template <typename T>
template <typename U>
MemSpan<U>
MemSpan<T>::rebind() const
{
  static_assert(detail::is_span_compatible<T, U>::value,
                "MemSpan only allows rebinding between types who sizes are integral multiples.");
  return {static_cast<U *>(static_cast<void *>(_ptr)), detail::is_span_compatible<T, U>::count(this->size())};
}

template <typename T>
std::string_view
MemSpan<T>::view() const
{
  return {static_cast<const char *>(_ptr), this->size()};
}

// --- void specialization ---

template <typename U> constexpr MemSpan<void>::MemSpan(MemSpan<U> const &that) : _ptr(that._ptr), _size(that.size()) {}

inline constexpr MemSpan<void>::MemSpan(value_type *ptr, size_t n) : _ptr{ptr}, _size{n} {}

inline MemSpan<void>::MemSpan(value_type *first, value_type *last) : _ptr{first}, _size{detail::ptr_distance(first, last)} {}

inline constexpr MemSpan<void>::MemSpan(std::nullptr_t) {}

inline MemSpan<void> &
MemSpan<void>::assign(value_type *ptr, size_t n)
{
  _ptr  = ptr;
  _size = n;
  return *this;
}

inline MemSpan<void> &
MemSpan<void>::assign(value_type *first, value_type const *last)
{
  _ptr  = first;
  _size = detail::ptr_distance(first, last);
  return *this;
}

inline MemSpan<void> &
MemSpan<void>::clear()
{
  _ptr  = nullptr;
  _size = 0;
  return *this;
}

inline bool
MemSpan<void>::is_same(self_type const &that) const
{
  return _ptr == that._ptr && _size == that._size;
}

inline bool
MemSpan<void>::operator==(self_type const &that) const
{
  return _size == that._size && (_ptr == that._ptr || 0 == memcmp(_ptr, that._ptr, _size));
}

inline bool
MemSpan<void>::operator!=(self_type const &that) const
{
  return !(*this == that);
}

inline bool
MemSpan<void>::operator!() const
{
  return _size == 0;
}

inline MemSpan<void>::operator bool() const
{
  return _size != 0;
}

inline bool
MemSpan<void>::empty() const
{
  return _size == 0;
}

inline void *
MemSpan<void>::data() const
{
  return _ptr;
}

inline void *
MemSpan<void>::data_end() const
{
  return static_cast<char *>(_ptr) + _size;
}

inline size_t
MemSpan<void>::size() const
{
  return _size;
}

template <typename U>
auto
MemSpan<void>::operator=(MemSpan<U> const &that) -> self_type &
{
  _ptr  = that._ptr;
  _size = that.size();
  return *this;
}

inline bool
MemSpan<void>::contains(value_type const *ptr) const
{
  return _ptr <= ptr && ptr < this->data_end();
}

inline MemSpan<void>
MemSpan<void>::prefix(size_t n) const
{
  return {_ptr, std::min(n, _size)};
}

inline MemSpan<void> &
MemSpan<void>::remove_prefix(size_t n)
{
  n = std::max(_size, n);
  _size -= n;
  _ptr = static_cast<char *>(_ptr) + n;
  return *this;
}

inline MemSpan<void>
MemSpan<void>::suffix(size_t count) const
{
  count = std::max(count, _size);
  return {static_cast<char *>(this->data_end()) - count, size_t(count)};
}

inline MemSpan<void> &
MemSpan<void>::remove_suffix(size_t count)
{
  _size -= std::max(count, _size);
  return *this;
}

template <typename U>
MemSpan<U>
MemSpan<void>::rebind() const
{
  return {static_cast<U *>(_ptr), detail::is_span_compatible<void, U>::count(_size)};
}

// Specialize so that @c void -> @c void rebinding compiles and works as expected.
template <>
inline MemSpan<void>
MemSpan<void>::rebind() const
{
  return *this;
}

inline std::string_view
MemSpan<void>::view() const
{
  return {static_cast<char const *>(_ptr), _size};
}

} // namespace ts