File: using_traitlets.rst

package info (click to toggle)
traitlets 5.14.3%2Breally5.14.3-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,180 kB
  • sloc: python: 10,581; makefile: 176
file content (216 lines) | stat: -rw-r--r-- 6,002 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
Using Traitlets
===============

In short, traitlets let the user define classes that have

1. Attributes (traits) with type checking and dynamically computed
   default values
2. Traits emit change events when attributes are modified
3. Traitlets perform some validation and allow coercion of new trait
   values on assignment. They also allow the user to define custom
   validation logic for attributes based on the value of other
   attributes.

Default values, and checking type and value
-------------------------------------------

At its most basic, traitlets provides type checking, and dynamic default
value generation of attributes on :class:`traitlets.HasTraits`
subclasses:

.. code:: python

    from traitlets import HasTraits, Int, Unicode, default
    import getpass


    class Identity(HasTraits):
        username = Unicode()

        @default("username")
        def _default_username(self):
            return getpass.getuser()

.. code:: python

    class Foo(HasTraits):
        bar = Int()


    foo = Foo(bar="3")  # raises a TraitError

::

    TraitError: The 'bar' trait of a Foo instance must be an int,
    but a value of '3' <class 'str'> was specified

observe
-------

Traitlets implement the observer pattern

.. code:: python

    class Foo(HasTraits):
        bar = Int()
        baz = Unicode()


    foo = Foo()


    def func(change):
        print(change["old"])
        print(change["new"])  # as of traitlets 4.3, one should be able to
        # write print(change.new) instead


    foo.observe(func, names=["bar"])
    foo.bar = 1  # prints '0\n 1'
    foo.baz = "abc"  # prints nothing

When observers are methods of the class, a decorator syntax can be used.

.. code:: python

    class Foo(HasTraits):
        bar = Int()
        baz = Unicode()

        @observe("bar")
        def _observe_bar(self, change):
            print(change["old"])
            print(change["new"])

Validation and Coercion
-----------------------

Custom Cross-Validation
^^^^^^^^^^^^^^^^^^^^^^^

Each trait type (``Int``, ``Unicode``, ``Dict`` etc.) may have its own
validation or coercion logic. In addition, we can register custom
cross-validators that may depend on the state of other attributes.

Basic Example: Validating the Parity of a Trait
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. code:: python

    from traitlets import HasTraits, TraitError, Int, Bool, validate


    class Parity(HasTraits):
        data = Int()
        parity = Int()

        @validate("data")
        def _valid_data(self, proposal):
            if proposal["value"] % 2 != self.parity:
                raise TraitError("data and parity should be consistent")
            return proposal["value"]

        @validate("parity")
        def _valid_parity(self, proposal):
            parity = proposal["value"]
            if parity not in [0, 1]:
                raise TraitError("parity should be 0 or 1")
            if self.data % 2 != parity:
                raise TraitError("data and parity should be consistent")
            return proposal["value"]


    parity_check = Parity(data=2)

    # Changing required parity and value together while holding cross validation
    with parity_check.hold_trait_notifications():
        parity_check.data = 1
        parity_check.parity = 1

Notice how all of the examples above return
``proposal['value']``. Returning a value
is necessary for validation to work
properly, since the new value of the trait will be the
return value of the function decorated by ``@validate``. If this
function does not have any ``return`` statement, then the returned
value will be ``None``, instead of what we wanted (which is ``proposal['value']``).

However, we recommend that custom cross-validators don't modify the state of
the HasTraits instance.

Advanced Example: Validating the Schema
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The ``List`` and ``Dict`` trait types allow the validation of nested
properties.

.. code:: python

    from traitlets import HasTraits, Dict, Bool, Unicode


    class Nested(HasTraits):
        value = Dict(
            per_key_traits={"configuration": Dict(value_trait=Unicode()), "flag": Bool()}
        )


    n = Nested()
    n.value = dict(flag=True, configuration={})  # OK
    n.value = dict(flag=True, configuration="")  # raises a TraitError.


However, for deeply nested properties it might be more appropriate to use an
external validator:

.. code:: python

    import jsonschema

    value_schema = {
        "type": "object",
        "properties": {
            "price": {"type": "number"},
            "name": {"type": "string"},
        },
    }

    from traitlets import HasTraits, Dict, TraitError, validate, default


    class Schema(HasTraits):
        value = Dict()

        @default("value")
        def _default_value(self):
            return dict(name="", price=1)

        @validate("value")
        def _validate_value(self, proposal):
            try:
                jsonschema.validate(proposal["value"], value_schema)
            except jsonschema.ValidationError as e:
                raise TraitError(e)
            return proposal["value"]


    s = Schema()
    s.value = dict(name="", price="1")  # raises a TraitError


Holding Trait Cross-Validation and Notifications
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Sometimes it may be impossible to transition between valid states for a
``HasTraits`` instance by changing attributes one by one. The
``hold_trait_notifications`` context manager can be used to hold the custom
cross validation until the context manager is released. If a validation error
occurs, changes are rolled back to the initial state.

Custom Events
-------------

Finally, trait types can emit other events types than trait changes. This
capability was added so as to enable notifications on change of values in
container classes. The items available in the dictionary passed to the observer
registered with ``observe`` depends on the event type.