## File: bo.tex

package info (click to toggle)
tralics 2.14.4-2
 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647 \documentclass[AIF]{cedram} \begin{document} \title{Fourier coefficients for simple $L^\infty$ functions} \alttitle{Coefficients Fourier pour fonctions $L^\infty$ simples} \author{\firstname{Donald} \middlename{E.} \lastname{Knuth}} \address{\TeX\ Users Group \\P.O. Box 869\\ Santa Barbara, CA 93102-0869 USA} \email{d.e.knuth@somewhere.on.the.net} \subjclass{11M26, 11M36, 11S40} \keywords{simple $L^\infty$ functions, lambda function} \altkeywords{fonctions $L^\infty$ simples, fonction lambda} \daterecieved{2004-06-14}%{14 juin 2004} \dateaccepted{2004-12-09}%{9 d�cembre 2004} \begin{abstract} This is an abstract with a beautiful inline formula % Comment! $\lambda_n(\pi) = \frac{N}{2} n \log n + C_1(\pi) n + O(\sqrt{n}\log{n})$, where $C_1(\pi)$ is a real-valued constant. \end{abstract} \begin{altabstract} Mon r�sum� avec ma formule $\lambda_n(\pi) = \frac{N}{2} n \log n + C_1(\pi) n + O(\sqrt{n}\log{n})$, o� $C_1(\pi)$ est une constante r�elle. \end{altabstract} \maketitle \section{Introduction} The content of the document is unimportant. We have a simple math formula $\alpha=\beta$ and two references \cite{Ba03} and \cite{BPY1} \bibliography{bo} \end{document}