File: exemple2006.tex

package info (click to toggle)
tralics 2.14.4-2
  • links: PTS
  • area: main
  • in suites: bullseye, buster, jessie, jessie-kfreebsd, sid, stretch, wheezy
  • size: 17,152 kB
  • ctags: 8,260
  • sloc: cpp: 49,403; xml: 18,145; sh: 140; makefile: 118
file content (693 lines) | stat: -rw-r--r-- 20,902 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
% Example of an activity report, much simplified

\documentclass{ra2006}
\usepackage{amsfonts}
\usepackage{amsmath}
\usepackage{subfigure}
\usepackage{array}
\let\href\htmladdnormallink
\theme{num}
\isproject{Yes}
\projet{exemple}{Apics}{Analysis and Problems of Inverse type in Control and Signal processing}
\UR{\URSophia}

\def\reachable{controllable} % ok ?
\def\corresp{manager}
\def\CC{{\mathbb C}}

\declaretopic{A}{Topic one}
\declaretopic{B}{Topic two}
\declaretopic{C}{Topic three}

\begin{document}

\begin{filecontents+}{exemple\_all2006.bib}
@Book{anap,
  editor =       {Fournier, J.-D. and Grimm, J. and Leblond, J. and
 Partington, J. R.},
  title =        {Harmonic Analysis and Rational Approximation;
Their R�les in Signals, Control and Dynamical Systems},
  publisher =    {Springer Verlag},
  year =         {2006},
  volume =       {327},
  series =       {Lecture Notes in Control and Information Sciences},
  isbn =         {3-540-30922-5}
}

@PhdThesis{th-david,
  author =       {Avanessoff, David},
  title =        {Lin�arisation dynamique des syst�mes non lin�aires et
                  param�trage de l'ensemble des solutions},
  school =       {Univ. de Nice - Sophia Antipolis},
  year =         2006,
  month =        jun,
 }
@InProceedings{ref1,
  author =       { Charlot, Gr�goire},
  title =        {Stability of Nonlinear switched systems in the plane},
  booktitle =    {44th IEEE Conf. },
  year =         2005,
  pages={3285--3290},
  address =      {Seville, Spain},
  month =        dec
}
@InProceedings{ref2,
  author =       {Boscain, Ugo},
  title =        {Stability of Non},
  year =         2006,
  pages={3285--3290},
  address =      {Seville, Spain},
  month =        dec
}
@InProceedings{ref3,
  author =       {Sigalotti, Mario},
  title =        {Stability of Nonlinear switched systems in the plane},
  booktitle =    {44th IEEE Conf. },
  year =         2005,
  pages={3285--3290},
  address =      {Seville, Spain},
  month =        dec
}

\end{filecontents+}

\maketitle
\nocite{*}

\begin{module}{composition}{en-tete}{}

\begin{catperso}{Team Leader}
\pers{Laurent}{Baratchart}{Scientist}{Inria}[DR Inria]
\end{catperso}

% 
\begin{catperso}{Deputy Team Leader}
\pers{Jean-Baptiste}{Pomet}{Scientist}{Inria}[CR Inria]
\end{catperso}

\begin{catperso}{Administrative Assistant}
\pers{France}{Limouzis}{Assistant}{Inria}[AI Inria, partial time in the team]
\end{catperso}

\begin{catperso}{Staff Member}
\pers{Jos�}{Grimm}{Scientist}{Inria}[CR Inria]
\pers{Juliette}{Leblond}{Scientist}{Inria}[DR Inria (since September, CR INRIA b
efore)]
\pers{Martine}{Olivi}{Scientist}{Inria}[CR Inria]
\pers{Fabien}{Seyfert}{Scientist}{Inria}[CR Inria]
\end{catperso}

\end{module}


\begin{module}{presentation}{presentation}{}
\begin{moreinfo}
The Apics Team is a Project Team since January 2005. 
\end{moreinfo}


The Team develops constructive methods for modeling, identification and 
control of dynamical systems.

\subsubsection*{Research Themes}
\begin{itemize}
\item Meromorphic approximation in the complex domain.
\item Inverse potential problems in 3-D and analysis of harmonic fields.
\item Control and structure analysis of non-linear systems.
 \end{itemize}

\subsubsection*{International and industrial partners}

\begin{itemize}
\item Industrial collaborations with Alcatel-Alenia-Space.
\item Exchanges with UST (Villeneuve d'Asq).
\item The project is involved in a NATO Collaborative Linkage Grant (with.
\end{itemize}
\end{module}


\begin{module}{fondements}{identif}{Identification and deconvolution}
Let us first introduce the subject of Identification in some generality.
Let us turn to work of the Apics Team\footnote{and of the former
  MIAOU-project}  can be partly recast from the data.

We shall explain in more detail the above steps in the sub-paragraphs
to come. 

\subsubsection{Analytic approximation of incomplete boundary data}
\label{dida-mero}
\begin{participants}
\pers{Laurent}{Baratchart},
\pers{Jos�}{Grimm},
\pers{Juliette}{Leblond},
\pers{Jean-Paul}{Marmorat}[CMA, �cole des Mines],
\pers{Jonathan}{Partington},
\pers{Fabien}{Seyfert}
\end{participants}

\begin{motscle}
meromorphic approximation, frequency-domain identification,
extremal problems, {alg�bre �l�mentaire $(\max,+)$}  
\end{motscle}

A prototypical Problem is:

{\sl ($P$)~~Let $p \geq 1$, $N \geq 0$, $K$ be an arc of the unit circle $T$, 
  $f \in L^p(K)$, $\psi \in L^p(T \setminus K)$ and $M>0$;
  find a function  $g \in H^p + R_N$ such that 
  $\|g - \psi\|_{L^p(T \setminus K)} \leq M$ and such that $g - f$ 
  is of minimal norm in  $L^p(K)$ under this constraint.}

In order to impose pointwise constraints in the frequency domain
 one may wish to express
the gauge constraint on $T\setminus K$ in a more subtle manner, depending on
the frequency:

{\sl ($P'$)~~Let $p \geq 1$, $N \geq 0$, $K$ be an arc of the unit circle
$T$, $f \in L^p (K)$, $\psi \in L^p(T \setminus K)$ and
$M \in L^p(T \setminus K)$;
find a function 
$g \in H^p + R_N$ such that $|g - \psi|\leq M$ a.e.\ on 
$T \setminus K$ and such that  $g - f$ is of minimal norm in
$L^p(K)$ under this constraint.}

Deeply linked with Problem $(P)$,  is the following completion Problem:


{\sl ($P''$)~~Let
$p \geq 1$, $N \geq 0$, $K$ an arc of the unit circle $T$, 
$f \in L^p(K)$,  $\psi \in L^p(T \setminus K)$ and
$M >0$; find a function  
$h \in L^p(T \setminus K)$ such that 
$\|h - \psi\|_{L^p(T\setminus K)} \leq M$, and such that the distance to 
$H^p + R_N$ of the concatenated function $f\vee h$
is minimal in $L^p(T)$ under this constraint.}

A version of this problem where the constraint depends on the frequency is:

{\sl ($P'''$)~~Let $p \geq 1$,
$N \geq 0$, $K$ an arc the unit circle $T$, $f \in L^p(K)$,  
$\psi \in L^p(T \setminus K)$ and
$M \in L^p(T \setminus K)$; find a function  $h \in L^p(T
\setminus K)$ such that 
$|h - \psi|\leq M$ a.e.\ on $T \setminus K$, and such that the distance to
$H^p + R_N$ of the concatenated function $f\vee h$
is minimal in $L^p(T)$ under this constraint.}

Let us mention that Problem $(P'')$ reduces to Problem 
$(P)$ that in turn reduces, although implicitly, 
to an extremal Problem without
constraint, (i.e., a Problem of type  $(P)$ where $K=T$) that is
denoted conventionally by  $(P_0)$. In the case where $p=\infty$, 
Problems  $(P')$ and $(P''')$ can viewed as special cases of 
$(P)$ and $(P'')$ respectively, but if  $p<\infty$ the situation
is different.

where the constraint on the approximant is expressed in terms of
its real and imaginary parts while the criterion takes only its real part 
into account:

{\sl Let $p \geq 1$, $K$ be an arc of the unit circle $T$, 
  $f \in L^p(K)$, $\psi \in L^p(T \setminus K)$, and $\alpha, \beta, M>0$;
  find a function  $g \in H^p$ such that 
  $\alpha \, \|\mbox{\rm Re} ({g - \psi})\|_{L^p(T \setminus K)} + \beta
\, \|\mbox{\rm Im} ({g - \psi})\|_{L^p(T \setminus K)} \leq M$ and
such that $\mbox{\rm Re} (g - f)$    is of minimal norm in  $L^p(K)$
under this constraint.} 

see sections \moduleref{APICS}{domaine}{dom-fissures} and
\moduleref{APICS}{resultats}{fissures}, where data and physical prior
information concern  real (or imaginary)  parts of analytic functions.

This allows one to 
\begin{enumerate}
\item extend  the index theorem to the case $2\leq p\leq\infty$
\item study asymptotic errors with
\item characterize the asymptotic (cf. section \ref{didactique-poles}). 
\end{enumerate}
In connection with the second and third items above,see section \ref{AHH}.

\subsubsection{Scalar rational approximation}
\label{didactique-approx-rat-scal}
\begin{participants}
\pers{Laurent}{Baratchart},
\pers{Martine}{Olivi},
\pers{Edward}{Saff},
\pers{Herbert}{Stahl}[TFH Berlin],
\pers{Maxim}{Yattselev}
\end{participants}

\begin{motscle}
rational approximation, critical point, orthogonal polynomials
\end{motscle}
Rational approximation is the second step mentioned
in section~\moduleref{APICS}{fondements}{identif}. 
The Problem can be stated as:

{\sl Let $1\leq p\leq\infty$, $f\in H^p$ and $n$ an integer; 
find a rational function without poles in the unit disk, and of
degree at most $n$ that is nearest possible to $f$ in  $H^p$.}
In this way we are led to consider
minimizing a criterion of the form:
\begin{equation}
\label{crit}
\left\|f - \frac{p_m}{q_n} \right\|_{L^2(d \mu)} 
\end{equation}
where, by definition, 
\[
\|g\|_{L^2(d \mu)}^2=\frac{1}{2\pi} \int_{-\pi}^{\pi}|g(e^{i\theta})|^2
d\mu(\theta),
\]


\[
\min \left\||f| - \left|\frac{p_n}{q_n}\right| \right\|_{L^p(T)}.
\]

\[
\left\||f|^2 - \left|\frac{p_n}{q_n}\right|^2 \right\|_{L^\infty(T)}
<\varepsilon,
\]

\paragraph{OK}
\label{didactique-approx-rat-mat}
If one introduces now as a new variable the rational matrix $R$ defined by
\[
R=\left(\begin{array}{cc}
L            &  H \\
0            &   I_m
\end{array} \right)^{-1}
\]
and if $T$ stands for the first block-row, 

\begin{equation}
\label{defLL}
\|T\|_{\Lambda}^2={\bf Tr}\left\{\frac{1}{2\pi}
\int_{0}^{2\pi}T(e^{i\theta})\,
d\Lambda(\theta)\,T^*(e^{i\theta})\right\},
\end{equation}
\end{module}

\begin{module}{fondements}{nl}{Structure and control of non-linear systems}

In order to control a system, one generally relies on a model.

\subsubsection{Feedback control and optimal control}
\label{nl-stab}

Stabilization by continuous state feedback---or output feedback, that is,


\subsubsection{Transformations and equivalences of non-linear systems and models} 
\label{nl-trans}


\paragraph{Dynamic linearization.}
The problem of dynamic linearization,.

\paragraph{Topological Equivalence}

In what precedes, we have not taken into account the degree of
\emph{smoothness} of the transformations under consideration.\end{module}

\begin{module}{domaine}{chapeau}{Introduction}
The botton line of the team's activity is twofold,
\end{module}

\begin{module}{domaine}{dom-fissures}{Geometric inverse problems 
for the Laplacian}

Localizing cracks, pointwise sources or occlusions in a two-dimensional.



\end{module}


\begin{module}{domaine}{resonn}{Identification and design of resonant systems}

One of the best training ground for the research of the team in function
theory is the identification and design of physical systems. 

\begin{figure}
\begin{center}
\includegraphics{miaou_transf}
\end{center}
\caption{Transducer model.}
\label{trans}
\end{figure}

\begin{figure}
\begin{center}
\includegraphics{miaou_coup}
\end{center}
\caption{Configuration of the filter}
\label{filtrescnes}
\end{figure}\end{module}

\begin{module}{domaine}{spatial}{Spatial mechanics}
The use of satellites in telecommunication networks motivates.
\end{module}


\begin{module}{domaine}{optique}{Non-linear optics}
The increased capacity of numerical channels in information
technology is a major
industrial challenge.
\end{module}


\begin{module}{domaine}{plat}{Transformations and equivalence of non-linear systems}


The works presented in module~\ref{nl-trans} lie upstream.
\end{module}


\begin{module}{logiciels}{logi-tralics}{The Tralics software}
\label{RARL2}
\begin{participant}
\pers{Jos�}{Grimm}[\corresp]
\end{participant}
The development of a \LaTeX\ to XML translator, named Tralics was continued.
\end{module}

\begin{module}{logiciels}{RARL2}{The RARL2 software}
\begin{participants}
\pers{Jean-Paul}{Marmorat},
\pers{Martine}{Olivi}[\corresp]
\end{participants}
 \label{didactique-poles}

RARL2 (R�alisation interne et Approximation Rationnelle L2) is a software for
rational approximation (see module \ref{didactique-approx-rat-mat}). Its web
page is
\htmladdnormallink{\url{http://www-sop.inria.fr/miaou/RARL2/rarl2.html}}
{http://www-sop.inria.fr/miaou/RARL2/rarl2.html}.
It is germane to the arl2 function of hyperion
\end{module}

\begin{module}{logiciels}{RGC}{The RGC software}
The identification of  filters modeled 
see section~\moduleref{APICS}{resultats}{Couplages-Algebrique}.
\end{module}

\begin{module}{logiciels}{PRESTO-HF}{PRESTO-HF}
\begin{participant}
\pers{Fabien}{Seyfert}
\end{participant}

PRESTO-HF: a toolbox dedicated to lowpass parameter identification for
hyperfrequency filters
\htmladdnormallink{\url{http://www-sop.inria.fr/miaou/Fabien.Seyfert/Presto_web_page/presto_pres.html}}
{http://www-sop.inria.fr/miaou/Fabien.Seyfert/Presto_web_page/presto_pres.html}
The `miaou' should be replaced by `apics' here.
\end{module}


\begin{module}{logiciels}{logi-endymion}{The Endymion software}
\label{endymion}
\begin{participant}
\pers{Jos�}{Grimm}[\corresp]
\end{participant}
We have started the development of Endymion, a software licensed
under the CeCILL license version two, see
\href{http://www.cecill.info}{http://www.cecill.info/}.
\end{module}

\begin{module}[A]{resultats}{RAjose}{Tools for producing the Activity Report
    (this document)}

The great novelty in the RAWEB2002 (Scientific Annex to the Annual Activity
Report of Inria), was the use of XML as intermediate language, and the
possibility of bypassing \LaTeX.  for the example we get
\verb+${\#119987 _y=lim_{x\#8594 0}sin^2{(x)}}$+.

\end{module}

\begin{module}[A]{resultats}{tralics}{Tralics: a Latex to XML Translator}
The \textit{Tralics} software is a C++ written \LaTeX\ to XML translator

\end{module}

\begin{module}[B]{resultats}{fissures}{Inverse Problems for 2D and 3D
  elliptic operators}

\subsubsection{Sources recovery in 2D and 3D}
\label{AHH}
The fact that 2D harmonic functions are real parts is also considered.

\subsubsection{Application to EEG inverse problems}

In 3D, epileptic regions in the cortex are often 
linked  to a number of important related issues.


\subsubsection{Cauchy problems in 2D and 3D}

Solving Cauchy problems on an annulus can be extended.

\subsubsection{More general geometries}

We also started  to be developed.

\subsubsection{Others elliptic operators}
Within the post-doctoral stay of E. Sincich, we began
the University of Nice.

\subsubsection{Application to  magnetic dipoles recovery}

The magnetic field produced by a magnetic dipole $\vec {m}$
located at a point ${\vec r}'$ is
\begin{equation}
\vec B(\vec r) = \frac{\mu_0}{4\pi}\left\{
\frac{3\vec m({\vec r}')\cdot(\vec r-{\vec r}')}{|\vec r-{\vec r}'|^5}
(\vec r-{\vec r}') - \frac{\vec m({\vec r}')}{|\vec r-{\vec r}'|^3}
\right\}. \label{W102}
\end{equation}

\[ 
B_z(x,y,z) = \frac{\mu_0}{4\pi}\lambda_k
\frac{2z^2-(x-x_k)^2-(y-y_k)^2}{[(x-x_k)^2+(y-y_k)^2+z^2]^{5/2}}
\]

\begin{equation}
C_z(x,y,z) = \frac{\mu_0}{4\pi^2a^2}\sum_k\lambda_k
\int_{D(0,a)}
\frac{2z^2-(x-\alpha-x_k)^2-(y-\beta-y_k)^2}
{\left[(x-\alpha-x_k)^2+(y-\beta-y_k)^2+z^2\right]^{5/2}} d\alpha d\beta.
\label{equa3}
\end{equation}
\end{module}


\begin{module}[C]{resultats}{martine1}{Parametrizations  of matrix-valued
    lossless functions} 
\label{Schur-realisations}
 The possibility to fertilize the pure algebraic LMI approach
with the rich and vast topic of Schur analysis has been pointed out and
deserve to be further investigated. 
\end{module}

\begin{module}[C]{resultats}{martine2}{The mathematics of Surface Acoustic Wave
    filters} 
\end{module}


\begin{module}[B]{resultats}{jul2}{Rational and Meromorphic Approximation}
The results  have been exploited .
\end{module}


\begin{module}[B]{resultats}{poles}{Behavior of poles}
\label{Rpoles}

This rather unexpected algorithm is currently being explored in 
details by E. Mina.
\end{module}


\begin{module}[C]{resultats}{ExtFab}{Analytic extension under pointwise constraints}
Such regularity condition should greatly impinge on the
numerical practice of the problem.
\end{module}

\begin{module}[B]{resultats}{Couplages-Algebrique}{Exhaustive determination
of constrained realizations corresponding to a transfer function}

\begin{eqnarray}
\label{ep}
p \in \CC^{r_1},\,\, E_{\sigma_1}(p)&=\{q \in \CC^{r_1},
\pi_{\sigma_1}(q)=\pi_{\sigma_1}(p)\} \\
p \in \CC^{r_2},\,\, E_{\sigma_1,\sigma_2}(p)&=\{q \in \CC^{r_1},
\pi_{\sigma_1}(q)=\pi_{\sigma_2}(p)\}
\end{eqnarray}
\end{module}

\begin{module}[A]{resultats}{synthese}{Zolotarev problem and multi-band filter design}

\label{zolo}
T

\end{module}


\begin{module}[B]{resultats}{omux}{Frequency Approximation and OMUX design}
\label{secOMUXc}
This is one reason for analysing the optimization problem further.
\end{module}



\begin{module}[A]{resultats}{mario-optim}{On the structure of optimal trajectories}

The results on the local regularity of trajectories in optimal control
obtained previously have been published.
\end{module}

\begin{module}[A]{resultats}{alex1}{Feedback for low thrust orbital transfer}
\label{secorbitet}
   The study concerns the control of a satellite.
\end{module}


\begin{module}{resultats}{flat}{Local linearization (or flatness) of control systems}

 a workable formulation of the question is now available.
\end{module}

\begin{module}{resultats}{dubbins}{Controllability for a general Dubins 
problem}
Controllability results for systems with drift are usually obtained.

\smallskip

The main object of our research  is given by Dubins-like systems 
In \footcite{ref1} we proved that $0\ne1$. This has been presented in 
\cite{ref2}  and \refercite{ref3}.
\end{module}



\begin{module}{contrats}{cnes}{Contracts CNES-IRCOM-INRIA}
Contracts \no 04/CNES/1728/00-DCT094
 see module \ref{filtrescnes},
\end{module}



\begin{module}{contrats}{aspi-c}{Contract Alcatel Space (Cannes)}
Contract \no 1 01 E 0726.
\end{module}

\begin{module}{international}{nat}{Scientific Committees}
L. Baratchart is a member of the editorial board
\end{module}

\begin{module}{international}{nationale}{National Actions}
Together with project-teams Caiman and Odyss�e
\end{module}

\begin{module}{international}{cee}{Actions  Funded by the EC}
The team is the recipient see
\htmladdnormallink{\url{http://www.ladseb.pd.cnr.it/control/ercim/control.html}}{http://www.ladseb.pd.cnr.it/control/ercim/control.html}.
\end{module}

\begin{module}{international}{monde}{Extra-european International Actions}
\textbf{NATO CLG} (Collaborative Linkage Grant), PST.CLG.979703, 
``Constructive approximation and inverse diffusion problems'', with
Vanderbilt Univ. (Nashville, USA) and LAMSIN-ENIT (Tunis, Tu.), 2003-2005.

\textbf{EPSRC}  grant (EP/C004418) ``Constrained approximation in
function spaces, with applications'', with Leeds Univ. (UK) and
Univ. Lyon I, 2005-2006.

\textbf{STIC-INRIA} and \textbf{AireD�veloppement} grants with
LAMSIN-ENIT (Tunis, Tu.), ``Probl�mes 
inverses du Laplacien et approximation constructive des fonctions'',

\textbf{NSF EMS21} RTG students exchange program (with
Vanderbilt University).
\end{module}



\begin{module}{international}{accueilx}{The Apics Seminar}

The following scientists gave a talk at the seminar:

\end{module}





\begin{module}{diffusion}{dif-ens}{Teaching}

\begin{description}
\item [Courses] \ 
  \begin{itemize}
  \item L. Baratchart, DEA G�om�trie et Analyse, LATP-CMI, Univ. de Provence
  \item M. Olivi, Math�matiques pour l'ing�nieur 
  \end{itemize}
  
\item [Trainees] \ 
  \begin{itemize}
  \item  Jonathan Chetboun (ENPC)
  \item Cristina Paduret
    \textit{R�solution de probl�mes inverses}
  \end{itemize}

\item[Ph.D. Students] \ 
  \begin{itemize}
  \item Alex Bombrun, �~Commande optimale de satellites~� (optimal etc)
  \item Imen Fellah, ``Data completion in inverse problems'',  co-tutelle.
\item Vincent Lunot,  �~Probl�mes  � la synth�se d'OMUX �, 
\item Moncef Mahjoub,    ``Compl�tion de donn�es g�om�triques.'' co-tutelle.
\item  Erwin Mina Diaz, ``Asymptotic properties of urves.''
\item  Maxim Yattselev, ``Meromorphic orthogonality.''

\end{itemize}
\item[defended Ph.D. thesis] \ 
 \begin{itemize}
  \item David Avanessoff, �~Lin�arisation dynamique des solutions~� (dynamic
 trajectories). June 8, 2005.\cite{th-david}
\end{itemize}
\item[Jurys] \ 
%
\item L.~Baratchart sat on 
\item J.~Leblond has been sitting
\item F.~Seyfert has been sitting 
\item J.-B. Pomet has been sitting 
\end{description}


\end{module}

\begin{module}{diffusion}{dif-anim}{Community service}

L. Baratchart was a member of the  ``bureau'' of the CP
(Comit� des Projets) of INRIA-Sophia Antipolis untill July.
He is a member of the ``commission de sp�cialistes'' (section 25) of the
Universit� de Provence.

J.~Leblond and J. Grimm are co-editors of  the
proceedings (to appear in 2006) of the 
CNRS-INRIA summer school ``Harmonic analysis and rational approximation: their
r\^oles in signals, control and dynamical systems theory''
(Porquerolles, 2003)
\htmladdnormallink{\url{http://www-sop.inria.fr/apics/anap03/index.en.html}}
{http://www-sop.inria.fr/apics/anap03/index.en.html} \footcite{anap}. 
\end{module}

\begin{module}{diffusion}{dif-conf}{Conferences and workshops}

A. Bombrun, B. Atfeh and L. Baratchart have presented a communication at 
CMFT2005 (Computational Methods and Function
Theory), Joensuu, Finland (June).
 \refercite{th-david}
\end{module}

\loadbiblio
\end{document}