1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461
|
#!/usr/bin/env perl
package main;
our $DEBUG;
package Gene_obj;
use strict;
use Nuc_translator;
#use Gene_ontology;
use Longest_orf;
use Storable qw (store retrieve freeze thaw dclone);
use warnings;
use Data::Dumper;
use Carp qw (croak cluck confess);
use URI::Escape;
=head1 NAME
package Gene_obj
=cut
=head1 DESCRIPTION
Gene_obj(s) encapsulate the elements of both gene structure and gene function. The gene structure is stored in a hierarchical fashion as follows:
Gene =========================================================
Exon ========= ========= ========= ========
CDS ====== ========= ======
where a Gene is a container for Exon(s), and each Exon is a container for a CDS, and an Exon can contain a single CDS component. An Exon lacking a CDS exon is an untranslated exon or UTR exon. The region of an Exon which extends beyond the CDS is also considered a UTR.
There are several ways to instantiate gene objects. A simple example is described:
Exon and CDS component coordinates can be assigned as hashes.
ie.
my %mrna = ( 100 => 200,
300 => 500 );
my %CDS = ( 150=>200,
300=>450);
my $sequence = "GACTACATTTAATAGGGCCC"; #string representing the genomic sequence
my $gene = new Gene_obj();
$gene->{com_name} = "hypothetical protein";
$gene->populate_gene_obj(\%CDS, \%mRNA, \$sequence);
print $gene->toString();
Alternatively, the individual components of genes (Exons and CDSs) can be instantiated separately and used to build the Gene from the ground up (See packages mRNA_exon_obj and CDS_exon_obj following this Gene_obj documentation).
my $cds_exon = new CDS_exon_obj (150, 200);
my $mRNA_exon = new mRNA_exon_obj (100, 200);
$mRNA_exon->set_CDS_exon_obj($cds_exon);
my $gene_obj = new Gene_obj ();
$gene_obj->{gene_name} = "hypothetical gene";
$gene_obj->{com_name} = "hypothetical protein";
$gene_obj->add_mRNA_exon_obj($mRNA_exon);
$gene_obj->refine_gene_object();
$gene_obj->create_all_sequence_types (\$sequence); #ref to genomic sequence string.
print $gene_obj->toString();
The API below describes useful functions for navigating and manipulating the Gene object along with all of its attributes.
=cut
=over 4
=item new()
B<Description:> Constructor for Gene_obj
B<Parameters:> none
B<Returns:> $gene_obj
The Gene_obj contains several attributes which can be manipulated directly (or by get/set methods if they exist). These attributes include:
asmbl_id # identifier for the genomic contig for which this gene is anchored.
TU_feat_name #feat_names are TIGR temporary identifiers.
Model_feat_name # temp TIGR identifier for gene models
locus #identifier for a gene (TU) ie. T2P3.5
pub_locus #another identifier for a gene (TU) ie. At2g00010
model_pub_locus #identifier for a gene model (model) ie. At2g00010.1
model_locus #analagous to locus, but for model rather than gene (TU)
alt_locus #alternative locus
gene_name # name for gene
com_name # name for gene product
comment #internal comment
pub_comment #comment related to gene
ec_num # enzyme commission number
gene_sym # gene symbol
is_5prime_partial # 0|1 missing start codon.
is_3prime_partial # 0|1 missing stop codon.
is_pseudogene # 0|1
curated_com_name # 0|1
curated_gene_structure # 0|1
## Other attributes set internally Access-only, do not set directly.
gene_length # length of gene span (int).
mid_pt # holds midpoint of gene-span
strand # [+-]
protein_seq # holds protein sequence
protein_seq_length
CDS_sequence #holds CDS sequence (translated to protein); based on CDS_exon coordinates
CDS_seq_length
cDNA_sequence #holds cDNA sequence; based on mRNA exon coordinates.
cDNA_seq_length
gene_sequence #holds unspliced transcript
gene_sequence_length #length of unspliced transcript
gene_type # "protein-coding", #default type for gene object. Could be changed to "rRNA|snoRNA|snRNA|tRNA" to accommodate other gene or feature types.
num_additional_isoforms # int
=back
=cut
sub new {
shift;
my $self = { asmbl_id => 0, #genomic contig ID
locus => undef, #text
pub_locus => undef, #text ie. At2g00010
model_pub_locus =>undef, #text ie. At2g00010.1
model_locus => undef, #text ie. F12G15.1
alt_locus => undef, #text
gene_name => undef, #text
com_name => undef, #text
comment => undef,
curated_com_name => 0,
curated_gene_structure => 0,
pub_comment => undef, #text
ec_num => undef, #text (enzyme commission number)
gene_type => "protein-coding", #default type for gene object. Could be changed to "rRNA|snoRNA|snRNA|tRNA" to accomodate other gene or feature types.
gene_sym => undef, #text (gene symbol)
mRNA_coords => 0, #assigned to anonymous hash of end5->end3 relative to the parent sequence
CDS_coords => 0, #assigned to anonymous hash of end5->end3 relative to the parent sequence
mRNA_exon_objs => 0, # holds arrayref to mRNA_obj, retrieve only thru method: get_exons()
num_exons => 0, # number of exons in this gene_obj
model_span => [], # holds array ref to (end5,end3) for CDS range of gene.
gene_span => [], # holds array ref to (end5,end3) for mRNA range of gene.
gene_length => 0, # length of gene span (int).
mid_pt => 0, # holds midpoint of gene-span
strand => 0, # [+-]
gi => undef, #text
prot_acc => undef, #text
is_pseudogene => 0, # toggle indicating pseudogene if 1.
is_5prime_partial => 0, #boolean indicating missing 5' part of gene.
is_3prime_partial => 0, #boolean
protein_seq => undef, # holds protein sequence
protein_seq_length => 0,
CDS_sequence => undef, #holds CDS sequence (translated to protein); based on CDS_exon coordinates
CDS_seq_length => 0,
cDNA_sequence => undef, #holds cDNA sequence; based on mRNA exon coordinates.
cDNA_seq_length => 0,
gene_sequence => undef, #holds unspliced transcript
gene_sequence_length => 0, #length of unspliced transcript
TU_feat_name => undef, #feat_names are TIGR temporary identifiers.
Model_feat_name =>undef,
classification => 'annotated_genes', #type of seq_element.
gene_synonyms => [], #list of synonymous model feat_names
GeneOntology=>[], #list of Gene_ontology assignment objects. ...see GeneOntology.pm
## Additional functional attributes:
secondary_gene_names => [],
secondary_product_names => [],
secondary_gene_symbols => [],
secondary_ec_numbers =>[],
## Alternative splicing support.
num_additional_isoforms => 0, # number of additional isoforms stored in additonal_isoform list below
additional_isoforms => [] # stores list of Gene_objs corresponding to the additional isoforms.
};
bless($self);
return ($self);
}
=over 4
=item erase_gene_structure()
B<Description:> Removes the structural components of a gene (ie. exons, CDSs, coordinate spans, any corresponding sequences)
B<Parameters:> none
B<Returns:> none
=back
=cut
## erase gene structure
sub erase_gene_structure {
my $self = shift;
$self->{mRNA_exon_objs} = 0;
$self->{num_exons} = 0;
$self->{model_span} = [];
$self->{gene_span} = [];
$self->{gene_length} = 0;
$self->{strand} = 0;
$self->{protein_seq} = 0;
$self->{CDS_sequence} = 0;
$self->{CDS_seq_length} = 0;
$self->{cDNA_sequence} = 0;
$self->{cDNA_seq_length} = 0;
}
=over 4
=item clone_gene()
B<Description:> Clones this Gene_obj by copying attributes from this Gene to a new gene. Does NOT do a deep clone for all attributes. See dclone() for a more rigorous cloning method. This method is safer because all references are not cloned, only the critical ones.
B<Parameters:> none
B<Returns:> new Gene_obj
=back
=cut
## all objects are cloned. References to data only are not.
sub clone_gene {
my $self = shift;
my $clone = new Gene_obj();
## Copy over the non-ref attribute values.
foreach my $key (keys %$self) {
my $value = $self->{$key};
if (defined $value) {
## Not copying over refs.
if (ref $value) {
next;
}
## Not copying over attributes of length > 200, such as protein/nucleotide sequences
my $length = length($value);
if ($length > 200) { next;}
}
# passed tests above, copying attribute.
$clone->{$key} = $value;
}
## copy over the gene synonyms.
my @gene_syns = @{$self->{gene_synonyms}};
$clone->{gene_synonyms} = \@gene_syns;
## copy the GO assignments:
my @GO_assignments = $self->get_gene_ontology_objs();
if (@GO_assignments) {
foreach my $go_assignment (@GO_assignments) {
my $go_clone = dclone($go_assignment);
$clone->add_gene_ontology_objs($go_clone);
}
}
## copy gene structure.
my @exons = $self->get_exons();
foreach my $exon (@exons) {
$clone->add_mRNA_exon_obj($exon->clone_exon());
}
foreach my $isoform ($self->get_additional_isoforms()) {
my $isoform_clone = $isoform->clone_gene();
$clone->add_isoform($isoform_clone);
}
$clone->refine_gene_object();
return ($clone);
}
=over 4
=item deep_clone()
B<Description:> Provides a deep clone of a gene_obj. Only references supported in Gene_obj documentation are supported. Those added in a rogue way are undef()d
B<Parameters:> none
B<Returns:> $gene_obj
uses the Storable dclone() function to deep clone the Gene_obj
=back
=cut
;
## all objects are cloned. References to data only are not.
sub deep_clone {
my $self = shift;
my $clone = dclone($self);
my %supported_refs = (model_span => 1,
gene_span => 1,
gene_synonyms => 1,
Gene_ontology => 1,
additional_isoforms=>1,
mRNA_exon_objs => 1);
foreach my $gene_obj ($clone, $clone->get_additional_isoforms()) {
my @keys = keys %$gene_obj;
foreach my $key (@keys) {
my $value = $gene_obj->{$key};
if (ref $value && !$supported_refs{$key}) {
$gene_obj->{$key} = undef;
}
}
}
return ($clone);
}
=over 4
=item populate_gene_obj()
B<Description:> Given CDS and mRNA coordinates stored in hash form, a gene object is populated with mRNA and CDS exons. This is one available way to populate a newly instantiated Gene_obj.
B<Parameters:> $cds_hash_ref, $mRNA_hash_ref, <$seq_ref>
$mRNA_hash_ref is a reference to a hash holding the end5 => end3 coordinates of the Exons
$cds_hash_ref same as mRNA_has_ref except holds the CDS end5 => end3 coordinates.
$seq_ref is a reference to a string containing the genomic sequence. This is an optional parameter.
B<Returns:> none
=back
=cut
;
## Do several things at once: assign CDS and mRNA coordinates, and build gene sequences.
## The \$seq_ref is optional in case you want to create the sequence types.
sub populate_gene_obj {
my ($self, $cds_ref, $mRNA_ref, $seq_ref) = @_;
$self->set_CDS_coords ($cds_ref);
$self->set_mRNA_coords ($mRNA_ref);
$self->refine_gene_object();
if (ref $seq_ref) {
$self->create_all_sequence_types($seq_ref);
}
## reinitialize the hashrefs:
$self->{mRNA_coords} = 0;
$self->{CDS_coords} = 0;
}
# alias above
sub populate_gene_object {
my $self = shift;
$self->populate_gene_obj(@_);
}
####
sub populate_gene_object_via_CDS_coords {
my $self = shift;
my @coordsets = @_;
foreach my $coordset (@coordsets) {
my ($end5, $end3) = @$coordset;
my $mrna_exon_obj = mRNA_exon_obj->new($end5, $end3);
my $cds_obj = CDS_exon_obj->new($end5, $end3);
$mrna_exon_obj->{CDS_exon_obj} = $cds_obj;
$self->add_mRNA_exon_obj($mrna_exon_obj);
}
$self->refine_gene_object();
return;
}
sub build_gene_obj_exons_n_cds_range {
my $self = shift;
my ($exons_aref, $cds_lend, $cds_rend, $orient) = @_;
my @exon_coords;
foreach my $exon_aref (@$exons_aref) {
my ($exon_lend, $exon_rend) = sort {$a<=>$b} @$exon_aref;
push (@exon_coords, [$exon_lend, $exon_rend] );
}
@exon_coords = sort {$a->[0]<=>$b->[0]} @exon_coords;
unless ($orient =~ /^[\+\-]$/) {
confess "Error, orient not [+-] ";
}
## build the CDS coordinates.
my @cds_range;
if ($cds_lend > 0 && $cds_rend > 0) {
($cds_lend, $cds_rend) = sort {$a<=>$b} ($cds_lend, $cds_rend);
foreach my $exon_coords_aref (@exon_coords) {
my ($exon_lend, $exon_rend) = @$exon_coords_aref;
if ($exon_rend >= $cds_lend && $exon_lend <= $cds_rend) {
## got overlap
my $cds_exon_lend = ($cds_lend < $exon_lend) ? $exon_lend : $cds_lend;
my $cds_exon_rend = ($cds_rend > $exon_rend) ? $exon_rend : $cds_rend;
push (@cds_range, [$cds_exon_lend, $cds_exon_rend]);
}
}
unless (@cds_range) {
confess "Error, no CDS exon coords built based on exon overlap";
}
}
## all coordinate sets are ordered left to right.
# build the coordinates href
my %exon_coords;
my %cds_coords;
foreach my $exon_coords_aref (@exon_coords) {
my ($exon_lend, $exon_rend) = @$exon_coords_aref;
my ($exon_end5, $exon_end3) = ($orient eq '+') ? ($exon_lend, $exon_rend) : ($exon_rend, $exon_lend);
$exon_coords{$exon_end5} = $exon_end3;
}
foreach my $cds_coords_aref (@cds_range) {
my ($cds_lend, $cds_rend) = @$cds_coords_aref;
my ($cds_end5, $cds_end3) = ($orient eq '+') ? ($cds_lend, $cds_rend) : ($cds_rend, $cds_lend);
$cds_coords{$cds_end5} = $cds_end3;
}
# print Dumper (\%cds_coords) . Dumper (\%exon_coords);
$self->populate_gene_obj(\%cds_coords, \%exon_coords);
return ($self);
}
####
sub join_adjacent_exons {
my $self = shift;
my @exons = $self->get_exons();
my $strand = $self->get_orientation();
my $first_exon = shift @exons;
my @new_exons = ($first_exon);
while (@exons) {
my $prev_exon = $new_exons[$#new_exons];
my ($prev_end5, $prev_end3) = $prev_exon->get_coords();
my $next_exon = shift @exons;
my ($next_end5, $next_end3) = $next_exon->get_coords();
if ( ($strand eq '+' && $prev_end3 == $next_end5 - 1) # adjacent
||
($strand eq '-' && $prev_end3 == $next_end5 + 1) ) {
$prev_exon->merge_exon($next_exon);
}
else {
push (@new_exons, $next_exon);
}
}
$self->{mRNA_exon_objs} = [@new_exons];
$self->refine_gene_object();
return;
}
=over 4
=item AAToNucleotideCoords()
B<Description:> Converts an amino acid -based coordinate to a genomic sequence -based coordinate.
B<Parameters:> $aa_coord
B<Returns:> $genomic_coord
undef is returned if the aa_coord could not be converted.
=back
=cut
;
sub AAToNucleotideCoords{
my($self) = shift;
my($aacoord) = shift;
my($debug) = shift;
my($PCDS_coords) = {};
my($A2NMapping) = {};
my($currAA) = 1;
my $strand = $self->{strand};
my @exons = $self->get_exons();
my($cds_count)=0;
my($translated_bp)=-1;
my($lastcarryover)=0;
my($end_bp);
foreach my $exon (sort {
if($strand eq "+"){
$a->{end5}<=>$b->{end5};
}
else{
$b->{end5}<=>$a->{end5};
}
} @exons) {
my $cds = $exon->get_CDS_obj();
if ($cds) {
my @cds_coords = $cds->get_CDS_end5_end3();
my($bpspread) = abs($cds_coords[0]-$cds_coords[1]);
$bpspread+=$lastcarryover;
my($nextAA) = int($bpspread/3); # last complete AA in CDS
$lastcarryover = $bpspread%3;
$PCDS_coords->{$currAA} = $currAA+$nextAA-1;
if($strand eq "+"){
$A2NMapping->{$currAA} = $cds_coords[0]<$cds_coords[1]?$cds_coords[0]:$cds_coords[1];
}
else{
$A2NMapping->{$currAA} = $cds_coords[0]<$cds_coords[1]?$cds_coords[1]:$cds_coords[0];
}
print "DEBUG: $strand $cds_count AA range ($currAA - $PCDS_coords->{$currAA}) nucleotide start($A2NMapping->{$currAA})\n" if($debug);
$currAA = $currAA+$nextAA;
$cds_count++;
if($strand eq "+"){
$end_bp = $cds_coords[0]<$cds_coords[1]?$cds_coords[1]:$cds_coords[0];
}
else{
$end_bp = $cds_coords[0]<$cds_coords[1]?$cds_coords[0]:$cds_coords[1];
}
}
}
# PCDS_coords key/value are start/stop aa counts for each cds;
# A2NMapping stores cds AA start key to cds nucleotide start
$cds_count=0;
foreach my $PCDS_end5 (sort {
$a<=>$b;
}(keys %$PCDS_coords)) {
my($PCDS_end3) = $PCDS_coords->{$PCDS_end5};
if($aacoord>=$PCDS_end5 && $aacoord<=$PCDS_end3){
my($nucleotide_start) = $A2NMapping->{$PCDS_end5};
my($aa_offset) = $aacoord - $PCDS_end5;
my($nucleotide_offset) = $aa_offset*3;
print "DEBUG: CDS offset $aa_offset AA $nucleotide_offset bp\n" if($debug);
if($strand eq "+"){
$translated_bp = $nucleotide_start+$nucleotide_offset;
}
else{
$translated_bp = $nucleotide_start-$nucleotide_offset;
}
print "DEBUG: Mapping $aacoord to $translated_bp in cds $cds_count\n" if($debug);
print "DEBUG: CDS $PCDS_end5 - $PCDS_end3 nucleotide start $A2NMapping->{$PCDS_end5}, nuc offset $nucleotide_offset\n" if($debug);
}
$cds_count++;
}
#}
if($translated_bp == -1){
$translated_bp = undef;
print STDERR "Unable to translate AA coordinate: $aacoord. Off end. Using undef\n" if($debug);
}
return $translated_bp;
}
## private method, used by populate_gene_obj()
# sets CDS_coords instance member to a hash reference of CDS coordinates. $hash{end5} = end3
sub set_CDS_coords {
my $self = shift;
my $hash_ref = shift;
if (ref ($hash_ref) eq 'HASH') {
$self->{CDS_coords} = $hash_ref;
} else {
print STDERR "Cannot set CDS_coords, must have hash reference\n";
}
}
=over 4
=item get_gene_span()
B<Description:> Retrieves the coordinates which span the length of the gene along the genomic sequence.
B<Parameters:> none
B<Returns:> (end5, end3)
These coordinates represent the minimal and maximal exonic coordinates of the gene. Orientation can be inferred by the relative values of end5 and end3.
=back
=cut
;
## All return gene end5, end3 ###
sub get_gene_span {
my $self = shift;
return (@{$self->{gene_span}});
}
## private
sub get_seq_span {
my $self = shift;
return ($self->get_gene_span());
}
=over 4
=item get_coords()
B<Description:> See get_gene_span()
B<Parameters:> none
B<Returns:> (end5, end3)
=back
=cut
sub get_coords {
my $self = shift;
return ($self->get_gene_span());
}
=over 4
=item get_model_span()
B<Description:> Retrieves the coordinates spanned by the protein-coding region of the gene along the genomic sequence.
B<Parameters:> none
B<Returns:> (end5, end3)
These coordinates are determined by the min and max of the CDS components of the gene.
=back
=cut
sub get_model_span {
my $self = shift;
return (@{$self->{model_span}});
}
sub get_CDS_span { # preferred
my $self = shift;
return($self->get_model_span());
}
=over 4
=item get_transcript_span()
B<Description:> Retrieves the coordinates spanned by the exonic regions of the gene along the genomic sequence.
B<Parameters:> none
B<Returns:> (lend, rend)
These coordinates are determined by the min and max of the CDS components of the gene.
=back
=cut
sub get_transcript_span {
my $self = shift;
my @coords;
my @exons = $self->get_exons();
foreach my $exon (@exons) {
push (@coords, $exon->get_coords());
}
@coords = sort {$a<=>$b} @coords;
my $lend = shift @coords;
my $rend = pop @coords;
return($lend, $rend);
}
sub is_pseudogene {
my $self = shift;
return ($self->{is_pseudogene});
}
sub set_pseudogene {
my $self = shift;
my $pseudogene_val = shift;
unless ($pseudogene_val =~ /[01]/) {
confess "Error, can set pseudogene to zero or one only.\n";
}
foreach my $gene ($self, $self->get_additional_isoforms()) {
$gene->{is_pseudogene} = $pseudogene_val;
}
return;
}
#private
# sets mRNA_coords instance member to a hash reference of CDS coordinates. $hash{end5} = end3
sub set_mRNA_coords {
my $self = shift;
my $hash_ref = shift;
if (ref ($hash_ref) eq 'HASH') {
$self->{mRNA_coords} = $hash_ref;
} else {
print STDERR "Cannot set CDS_coords, must have hash reference\n";
}
}
=over 4
=item refine_gene_object()
B<Description:> This method performs some data management operations and should be called at any time modifications have been made to the gene structure (ie. exons added or modified, model isoforms added, etc). It performs the following orientations:
-Sets (or resets) gene span and model span coordinates, strand orientation, gene length, mid-point.
B<Parameters:> none
B<Returns:> none
=back
=cut
## Once mRNA_coords and CDS_coords have been assigned, this will populate the remaining elements in the gene object.
sub refine_gene_object {
my ($self) = shift;
#check to see if mRNA_coords field is populated. If not, initialize.
if ($self->{mRNA_coords} == 0) {
$self->{mRNA_coords} = {};
}
my ($CDS_coords, $mRNA_coords) = ($self->{CDS_coords}, $self->{mRNA_coords});
unless ($CDS_coords && $mRNA_coords) {
#maybe created exon objects already
if ($self->{mRNA_exon_objs}) {
$self->trivial_refinement();
}
return;
}
# intialize mRNA_exon_objs to array ref.
$self->{mRNA_exon_objs} = [];
#retrieve coordinate data.
my %mRNA = %$mRNA_coords;
my %CDS = %$CDS_coords;
my @mRNAcoords = keys %mRNA;
my @CDScoords = keys %CDS;
my (%new_mRNA, %new_CDS);
## if correlation between mRNA exons and CDS exons, then map CDS's to mRNA's, otherwise, replicate CDSs as mRNAs
if ($#mRNAcoords >= $#CDScoords) {
foreach my $mRNA_end5 (keys %mRNA) {
my $mRNA_end3 = $mRNA{$mRNA_end5};
#find overlapping cds exon to mRNA exon
#easy to compare if in same orientation for all comparisons
my ($m1, $m2) = ($mRNA_end5 < $mRNA_end3) ? ($mRNA_end5, $mRNA_end3) : ($mRNA_end3, $mRNA_end5);
#create mRNA_exon_obj
my $mRNA_exon_obj = mRNA_exon_obj->new ($mRNA_end5, $mRNA_end3);
$new_mRNA{$mRNA_end5} = $mRNA_end3;
foreach my $CDS_end5 (keys %CDS) {
my $CDS_end3 = $CDS{$CDS_end5};
my ($c1, $c2) = ($CDS_end5 < $CDS_end3) ? ($CDS_end5, $CDS_end3) : ($CDS_end3, $CDS_end5);
## do overlap comparison; CDS must be contained within mRNA exon
if ( ($c1 >= $m1) && ($c2 <= $m2)) {
# found the contained CDS
$mRNA_exon_obj->{CDS_exon_obj} = CDS_exon_obj->new ($CDS_end5, $CDS_end3);
$new_CDS{$CDS_end5} = $CDS_end3;
last;
}
}
$self->add_mRNA_exon_obj($mRNA_exon_obj);
}
} else { # remap CDSs to mRNAS
print STDERR "ERROR: mRNA exons < CDS exons. Copying all CDS exons into mRNA exons. \n\n";
foreach my $CDS_end5 (keys %CDS) {
my $CDS_end3 = $CDS{$CDS_end5};
my $mRNA_exon_obj = mRNA_exon_obj->new ($CDS_end5, $CDS_end3);
$mRNA_exon_obj->{CDS_exon_obj} = CDS_exon_obj->new ($CDS_end5, $CDS_end3);
$self->add_mRNA_exon_obj($mRNA_exon_obj);
$new_mRNA{$CDS_end5} = $CDS_end3;
$new_CDS{$CDS_end5} = $CDS_end3;
}
}
$self->trivial_refinement();
## assign orientation to all children exon and CDS components.
my $strand = $self->get_orientation();
foreach my $exon ($self->get_exons()) {
$exon->{strand} = $strand;
if (my $cds = $exon->get_CDS_exon_obj()) {
$cds->{strand} = $strand;
}
}
return;
}
## alias
sub refine_gene_obj {
my $self = shift;
$self->refine_gene_object();
}
=over 4
=item get_exons()
B<Description:>Retrieves a list of exons belonging to this Gene_obj
B<Parameters:> none
B<Returns:> @exons
@exons is an ordered list of mRNA_exon_obj; the first exon of the list corresponds to the first exon of the spliced gene.
=back
=cut
;
sub get_exons {
my ($self) = shift;
if ($self->{mRNA_exon_objs} != 0) {
my @exons = (@{$self->{mRNA_exon_objs}});
@exons = sort {$a->{end5}<=>$b->{end5}} @exons;
if ($self->{strand} eq '-') {
@exons = reverse (@exons);
}
return (@exons);
} else {
my @x = ();
return (@x); #empty array
}
}
## private
sub get_segments {
my $self = shift;
return ($self->get_exons());
}
=over 4
=item number_of_exons()
B<Description:> Provides the number of exons contained by the Gene
B<Parameters:> none
B<Returns:> int
=back
=cut
sub number_of_exons {
my $self = shift;
my $exon_number = $#{$self->{mRNA_exon_objs}} + 1;
return ($exon_number);
}
=over 4
=item get_intron_coordinates()
B<Description:> Provides an ordered list of intron coordinates
B<Parameters:> none
B<Returns:> ( [end5,end3], ....)
A list of arrayRefs are returned providing the coordinates of introns, ordered from first intron to last intron within the gene.
=back
=cut
;
sub get_intron_coordinates {
my $gene_obj = shift;
my $strand = $gene_obj->get_orientation();
my @exons = $gene_obj->get_exons();
## exon list should already be sorted.
my @introns = ();
my $num_exons = $#exons + 1;
if ($num_exons > 1) { #only genes with multiple exons will have introns.
if ($strand eq '+') {
my $first_exon = shift @exons;
while (@exons) {
my $next_exon = shift @exons;
my ($first_end5, $first_end3) = $first_exon->get_coords();
my ($next_end5, $next_end3) = $next_exon->get_coords();
my $intron_end5 = $first_end3 + 1;
my $intron_end3 = $next_end5 -1;
if ($intron_end5 < $intron_end3) {
push (@introns, [$intron_end5, $intron_end3]);
}
$first_exon = $next_exon;
}
} elsif ($strand eq '-') {
my $first_exon = shift @exons;
while (@exons) {
my $next_exon = shift @exons;
my ($first_end5, $first_end3) = $first_exon->get_coords();
my ($next_end5, $next_end3) = $next_exon->get_coords();
my $intron_end5 = $first_end3 - 1;
my $intron_end3 = $next_end5 +1;
if ($intron_end5 > $intron_end3) {
push (@introns, [$intron_end5, $intron_end3]);
}
$first_exon = $next_exon;
}
} else {
die "Strand for gene_obj is not specified." . $gene_obj->toString();
}
}
return (@introns);
}
#private
sub trivial_refinement {
my $self = shift;
my @exons = $self->get_exons();
$self->{num_exons} = scalar(@exons);
my (%mRNAexons, %CDSexons);
foreach my $exon (@exons) {
my ($exon_end5, $exon_end3) = $exon->get_mRNA_exon_end5_end3();
$mRNAexons{$exon_end5} = $exon_end3;
my $cds;
if ($cds = $exon->get_CDS_obj()) {
my ($cds_end5, $cds_end3) = $cds->get_CDS_end5_end3();
$CDSexons{$cds_end5} = $cds_end3;
}
}
my @mRNAexonsEnd5s = sort {$a<=>$b} keys %mRNAexons;
my @CDSexonsEnd5s = sort {$a<=>$b} keys %CDSexons;
my $strand = 0; #initialize.
foreach my $mRNAend5 (@mRNAexonsEnd5s) {
my $mRNAend3 = $mRNAexons{$mRNAend5};
if ($mRNAend5 == $mRNAend3) {next;}
$strand = ($mRNAend5 < $mRNAend3) ? '+':'-';
last;
}
$self->{strand} = $strand;
## determine gene and model boundaries:
my ($gene_end5, $gene_end3, $model_end5, $model_end3);
my @gene_coords = sort {$a<=>$b} %mRNAexons;
my @model_coords = sort {$a<=>$b} %CDSexons;
my $gene_lend = shift @gene_coords;
my $gene_rend = pop @gene_coords;
## bound gene by transcript span
($gene_end5, $gene_end3) = ($strand eq "+") ? ($gene_lend, $gene_rend) : ($gene_rend, $gene_lend);
if (@model_coords) {
## bound model by protein coding span
my $model_lend = shift @model_coords;
my $model_rend = pop @model_coords;
($model_end5, $model_end3) = ($strand eq "+") ? ($model_lend, $model_rend) : ($model_rend, $model_lend);
} else {
## give it gene boundaries instead:
($model_end5, $model_end3) = ($gene_end5, $gene_end3);
}
$self->{gene_span} = [$gene_end5, $gene_end3];
$self->{gene_length} = abs ($gene_end3 - $gene_end5) + 1;
$self->{mid_pt} = int (($gene_end5 + $gene_end3)/2);
$self->{model_span} = [$model_end5, $model_end3];
## Refine isoforms if they exist.
if (my @isoforms = $self->get_additional_isoforms()) {
my @gene_span_coords = $self->get_gene_span();
foreach my $isoform (@isoforms) {
$isoform->refine_gene_object();
push (@gene_span_coords, $isoform->get_gene_span());
}
@gene_span_coords = sort {$a<=>$b} @gene_span_coords;
my $lend = shift @gene_span_coords;
my $rend = pop @gene_span_coords;
my $strand = $self->{strand};
if ($strand eq '-') {
($lend, $rend) = ($rend, $lend);
}
my $gene_length = abs ($lend -$rend) + 1;
foreach my $gene ($self, @isoforms) {
$gene->{gene_span} = [$lend, $rend];
$gene->{gene_length} = $gene_length;
}
}
}
=over 4
=item add_mRNA_exon_obj()
B<Description:> Used to add a single mRNA_exon_obj to the Gene_obj
B<Parameters:> mRNA_exon_obj
B<Returns:> none
=back
=cut
;
sub add_mRNA_exon_obj {
my ($self) = shift;
my ($mRNA_exon_obj) = shift;
if (!ref($self->{mRNA_exon_objs})) {
$self->{mRNA_exon_objs} = [];
}
my $index = $#{$self->{mRNA_exon_objs}};
$index++;
$self->{mRNA_exon_objs}->[$index] = $mRNA_exon_obj;
}
#private
## forcibly set protein sequence value
sub set_protein_sequence {
my $self = shift;
my $protein = shift;
if ($protein) {
$self->{protein_seq} = $protein;
$self->{protein_seq_length} = length ($protein);
} else {
print STDERR "No incoming protein sequence to set to.\n" . $self->toString();
}
}
#private
## forcibly set CDS sequence value
sub set_CDS_sequence {
my $self = shift;
my $cds_seq = shift;
if ($cds_seq) {
$self->{CDS_sequence} = $cds_seq;
$self->{CDS_sequence_length} = length ($cds_seq);
} else {
print STDERR "No incoming CDS sequence to set to\n" . $self->toString();
}
}
#private
sub set_cDNA_sequence {
my $self = shift;
my $cDNA_seq = shift;
if ($cDNA_seq) {
$self->{cDNA_sequence} = $cDNA_seq;
$self->{cDNA_sequence_length} = length($cDNA_seq);
} else {
print STDERR "No incoming cDNA sequence to set to.\n" . $self->toString();
}
}
#private
sub set_gene_sequence {
my $self = shift;
my $seq = shift;
if ($seq) {
$self->{gene_sequence} = $seq;
$self->{gene_sequence_length} = length ($seq);
} else {
print STDERR "No incoming gene sequence to set to\n" . $self->toString();
}
}
=over 4
=item create_all_sequence_types()
B<Description:> Given a scalar reference to the genomic sequence, the CDS, cDNA, unspliced transcript and protein sequences are constructed and populated within the Gene_obj
B<Parameters:> $genomic_seq_ref, [%params]
B<Returns:> 0|1
returns 1 upon success, 0 upon failure
By default, the protein and CDS sequence are populated. If you want the unspliced genomic sequence, you need to specify this in the attributes:
%params = ( potein => 1,
CDS => 1,
cDNA => 1,
unspliced_transcript => 0)
=back
=cut
## Create all gene sequences (protein, cds, cdna, genomic)
sub create_all_sequence_types {
my $self = shift;
my $big_seq_ref = shift;
my %atts = @_;
unless (ref($big_seq_ref) eq 'SCALAR') {
print STDERR "I require a sequence reference to create sequence types\n";
return (undef());
}
$self->create_cDNA_sequence($big_seq_ref) unless (exists($atts{cDNA}) && $atts{cDNA});
$self->create_gene_sequence($big_seq_ref, 1) if ($atts{unspliced_transcript}); #highlight exons by default.
if ($self->is_coding_gene()) {
$self->create_CDS_sequence ($big_seq_ref) unless (exists ($atts{CDS}) && $atts{CDS});
$self->create_protein_sequence($big_seq_ref) unless (exists ($atts{protein}) && $atts{protein});
}
if (my @isoforms = $self->get_additional_isoforms()) {
foreach my $isoform (@isoforms) {
$isoform->create_all_sequence_types($big_seq_ref, %atts);
}
}
return(1);
}
#private
## Create cDNA sequence
sub create_cDNA_sequence {
my $self = shift;
my $seq_ref = shift;
my $sequence_ref;
unless ($seq_ref) {
print STDERR "The parent sequence must be specified for the cDNA creation method\n";
return;
}
## hopefully the sequence came in as a reference. If not, make one to it.
## Don't want to pass chromosome sequences in by value!
if (ref($seq_ref)) {
$sequence_ref = $seq_ref;
} else {
$sequence_ref = \$seq_ref;
}
my @exons = $self->get_exons();
my $strand = $self->{strand};
my $cDNA_seq = "";
foreach my $exon_obj (sort {$a->{end5}<=>$b->{end5}} @exons) {
my $c1 = $exon_obj->{end5};
my $c2 = $exon_obj->{end3};
## sequence retrieval coordinates must be in forward orientation
my ($coord1, $coord2) = ($strand eq '+') ? ($c1, $c2) : ($c2, $c1);
$cDNA_seq .= substr ($$sequence_ref, ($coord1 - 1), ($coord2 - $coord1 + 1));
}
if ($strand eq '-') {
$cDNA_seq = &reverse_complement($cDNA_seq);
}
$self->set_cDNA_sequence($cDNA_seq);
return ($cDNA_seq);
}
#private
## create a CDS sequence, and populate the protein field.
sub create_CDS_sequence {
my $self = shift;
my $seq_ref = shift;
my $sequence_ref;
unless ($seq_ref) {
print STDERR "The parent sequence must be specified for the CDS creation method\n";
return;
}
unless ($self->is_coding_gene()) {
print STDERR "Warning: No coding region specified for gene: " . $self->toString();
return("");
}
## hopefully the sequence came in as a reference. If not, make one to it.
## Don't want to pass chromosome sequences in by value!
if (ref($seq_ref)) {
$sequence_ref = $seq_ref;
} else {
$sequence_ref = \$seq_ref;
}
my @exons = $self->get_exons();
my $strand = $self->{strand};
my $cds_seq = "";
foreach my $exon_obj (sort {$a->{end5}<=>$b->{end5}} @exons) {
my $CDS_obj = $exon_obj->get_CDS_obj();
if (ref $CDS_obj) {
my ($c1, $c2) = $CDS_obj->get_CDS_end5_end3();
## sequence retrieval coordinates must be in forward orientation
my ($coord1, $coord2) = ($strand eq '+') ? ($c1, $c2) : ($c2, $c1);
$cds_seq .= substr ($$sequence_ref, ($coord1 - 1), ($coord2 - $coord1 + 1));
}
}
if ($strand eq '-') {
$cds_seq = &reverse_complement($cds_seq);
}
$self->set_CDS_sequence($cds_seq);
return ($cds_seq);
}
sub is_coding_gene {
my $self = shift;
if ($self->get_CDS_length()) {
return(1);
}
else {
return(0);
}
}
#private
## Translation requires parent nucleotide sequence (bac, chromosome, whatever).
sub create_protein_sequence {
my $self = shift;
my $seq_ref = shift; # optional
unless ($self->is_coding_gene()) {
print STDERR "Warning: No coding sequence for gene: " . $self->toString();
return("");
}
my $cds_sequence = $self->get_CDS_sequence();
unless ($cds_sequence) {
## if has a CDS, then try to translate it if the genome sequence is available.
unless (ref($seq_ref) eq 'SCALAR') {
print STDERR "I require an assembly sequence ref if the CDS is unavailable\n";
return;
}
$cds_sequence = $self->create_CDS_sequence($seq_ref);
}
my $protein = &Nuc_translator::get_protein ($cds_sequence);
$self->set_protein_sequence($protein);
return ($protein);
}
#private
## Create the unspliced nucleotide transcript
sub create_gene_sequence {
my $self = shift;
my $big_seq_ref = shift;
my $highlight_exons_flag = shift; #upcases exons, lowcases introns.
unless (ref ($big_seq_ref) eq 'SCALAR') {
print STDERR "I require a reference to the assembly sequence!!\n";
return (undef());
}
my $strand = $self->{strand};
my ($gene_seq);
if ($highlight_exons_flag) {
my @exons = sort {$a->{end5}<=>$b->{end5}} $self->get_exons();
my $exon = shift @exons;
my ($lend, $rend) = sort {$a<=>$b} $exon->get_coords();
$gene_seq = uc (substr ($$big_seq_ref, $lend - 1, $rend - $lend + 1));
my $prev_rend = $rend;
while (@exons) {
$exon = shift @exons;
## Add intron, then exon
my ($lend, $rend) = sort {$a<=>$b} $exon->get_coords();
$gene_seq .= lc (substr ($$big_seq_ref, $prev_rend, $lend - $prev_rend-1));
$gene_seq .= uc (substr ($$big_seq_ref, $lend - 1, $rend - $lend + 1));
$prev_rend = $rend;
}
} else { #just get the sequence spanned by min and max coords
my ($coord1, $coord2) = sort {$a<=>$b} $self->get_gene_span();
$gene_seq = substr ($$big_seq_ref, ($coord1 - 1), ($coord2 - $coord1 + 1));
}
$gene_seq = &reverse_complement($gene_seq) if ($strand eq '-');
$self->set_gene_sequence($gene_seq);
return ($gene_seq);
}
## retrieving the sequences
=over 4
=item get_protein_sequence()
B<Description:> Retrieves the protein sequence
B<Parameters:> none
B<Returns:> $protein
Note: You must have called create_all_sequence_types($genomic_ref) before protein sequence is available for retrieval.
=back
=cut
;
sub get_protein_sequence {
my $self = shift;
return ($self->{protein_seq});
}
## alias
sub get_protein_seq {
my $self = shift;
return ($self->get_protein_sequence());
}
=over 4
=item get_CDS_sequence()
B<Description:> Retrieves the CDS sequence. The CDS sequence is the protein-coding nucleotide sequence.
B<Parameters:> none
B<Returns:> $cds
Note: You must have called create_all_sequence_types($genomic_ref) before protein sequence is available for retrieval.
=back
=cut
sub get_CDS_sequence {
my $self = shift;
return ($self->{CDS_sequence});
}
=over 4
=item get_cDNA_sequence()
B<Description:> Retrieves the tentative cDNA sequence for the Gene. The cDNA includes the CDS with potential UTR extensions.
B<Parameters:> none
B<Returns:> $cdna
Note: You must have called create_all_sequence_types($genomic_ref) before protein sequence is available for retrieval.
=back
=cut
sub get_cDNA_sequence {
my $self = shift;
return ($self->{cDNA_sequence});
}
sub get_CDS_length {
my $self = shift;
my $cds_length = 0;
my @exons = $self->get_exons();
foreach my $exon (@exons) {
if (my $cds = $exon->get_CDS_obj()) {
$cds_length += $cds->length();
}
}
return ($cds_length);
}
sub get_cDNA_length {
my $self = shift;
my $cdna_length = 0;
my @exons = $self->get_exons();
foreach my $exon (@exons) {
$cdna_length += $exon->length();
}
return($cdna_length);
}
=over 4
=item get_gene_sequence()
B<Description:> Retrieves the unspliced transcript of the gene.
B<Parameters:> none
B<Returns:> $unspliced_transcript
=back
=cut
sub get_gene_sequence {
my $self = shift;
return ($self->{gene_sequence});
}
=over 4
=item get_gene_synonyms()
B<Description:> Retrieves the Model_feat_name(s) for the synonomous gene models found on other BACs or contigs.
B<Parameters:> none
B<Returns:> @model_feat_names
For Arabidopsis, gene models are found within overlapping regions of BAC sequences, in which the gene models are annotated on both corresponding BACs. Given a Gene_obj for a model on one BAC, the synomous gene on the overlapping BAC can be identified via this method.
=back
=cut
sub get_gene_synonyms {
my $self = shift;
return (@{$self->{gene_synonyms}});
}
=over 4
=item clear_sequence_info()
B<Description:> Clears the sequence fields stored within a Gene_obj, including the CDS, cDNA, gene_sequence, and protein sequence. Often, these sequence fields, when populated, can consume large amounts of memory in comparison to the coordinate and functional annotation data. This method is useful to clear this memory when the sequences are not needed. The create_all_sequence_types($genomic_seq_ref) can be called again later to repopulate these sequences when they are needed.
B<Parameters:> none
B<Returns:> none
=back
=cut
## sequences consume huge amounts of memory in comparison to other gene features.
## want to clear them from time to time to save memory.
;
sub clear_sequence_info {
my $self = shift;
$self->{protein_seq} = undef;
$self->{CDS_sequence} = undef;
$self->{cDNA_sequence} = undef;
$self->{gene_sequence} = undef;
}
=over 4
=item set_gene_type()
B<Description:> Sets the type of gene. Expected types include:
protein-coding #default setting
rRNA
snoRNA
snRNA
tRNA
...or others as needed. Nothing is restricted.
B<Parameters:> $type
B<Returns:> none
=back
=cut
####
sub set_gene_type {
my ($self) = shift;
my ($gene_type) = shift;
$self->{gene_type} = $gene_type;
}
=over 4
=item adjust_gene_coordinates()
B<Description:> Used to add or subtract a specified number of bases from each gene component coordinate.
B<Parameters:> $adj_amount
$adj_amoount is a positive or negative integer.
B<Returns:> none
=back
=cut
;
####
# add value to all gene component coordinates
sub adjust_gene_coordinates {
my $self = shift;
my $adj_amount = shift;
my @exons = $self->get_exons();
foreach my $exon (@exons) {
my ($end5, $end3) = $exon->get_coords();
$exon->set_coords($end5 + $adj_amount, $end3 + $adj_amount);
my $cds = $exon->get_CDS_obj();
if (ref $cds) {
my ($end5, $end3) = $cds->get_coords();
$cds->set_coords($end5 + $adj_amount, $end3 + $adj_amount);
}
}
## don't forget about alt splicing isoforms!
my @isoforms = $self->get_additional_isoforms();
foreach my $isoform (@isoforms) {
$isoform->adjust_gene_coordinates($adj_amount);
}
$self->refine_gene_object();
}
=over 4
=item toString()
B<Description:> Textually describes the Gene_obj including coordinates and attributes.
B<Parameters:> <%attributes_list>
%attributes_list is optional and can control whether certain attributes are included in the textual output
Default settings are:
%attributes_list = (
-showIsoforms => 1, #set to 0 to avoid isoform info to the text output.
-showSeqs => 0 #set to 1 for avoiding protein, cds, genomic, cdna seqs as output.
)
B<Returns:> $text
=back
=cut
;
## retrieve text output describing the gene.
sub toString {
my $self = shift;
my %atts = @_;
# atts defaults:
# -showIsoforms=>1
# -showSeqs => 0
my $output = "";
foreach my $key (keys %$self) {
my $value = $self->{$key};
unless (defined $value) { next;}
if (ref $value) {
if ($key =~ /secondary/ && ref $value eq "ARRAY") {
foreach my $val (@$value) {
$output .= "\t\t$key\t$val\n";
}
}
} else {
if ($self->{is_pseudogene} && $key =~ /cds|cdna|protein/i && $key =~ /seq/) {
next;
}
if ((!$atts{-showSeqs}) && $key =~/seq/) { next; }
if ( ($value eq '0' || !defined($value)) && $key !~/^is_/) { next;} #dont print unpopulated info.
$output .= "\t$key:\t$value\n";
}
}
$output .= "\tgene_synonyms: @{$self->{gene_synonyms}}\n";
$output .= "\tmRNA_coords\t";
if (ref ($self->{mRNA_coords}) eq "HASH") {
foreach my $end5 (sort {$a<=>$b} keys %{$self->{mRNA_coords}}) {
$output .= "$end5-$self->{mRNA_coords}->{$end5} ";
}
}
$output .= "\n"
. "\tCDS_coords\t";
if (ref ($self->{CDS_coords}) eq "HASH") {
foreach my $end5 (sort {$a<=>$b} keys %{$self->{CDS_coords}}) {
$output .= "$end5-$self->{CDS_coords}->{$end5} ";
}
}
my @exons = $self->get_exons();
foreach my $exon (@exons) {
$output .= "\n\t\tRNA-exon: $exon->{end5}, $exon->{end3}\t";
my $cds = $exon->{CDS_exon_obj};
if ($cds) {
$output .= "CDS-exon: $cds->{end5}, $cds->{end3}";
}
}
if (ref $self->{gene_span}) {
my ($gene_end5, $gene_end3) = @{$self->{gene_span}};
$output .= "\n\tgene_span: $gene_end5-$gene_end3";
}
if (ref $self->{model_span}) {
my ($model_end5, $model_end3) = @{$self->{model_span}};
$output .= "\n\tmodel_span: $model_end5-$model_end3";
}
my @gene_ontology_objs = $self->get_gene_ontology_objs();
if (@gene_ontology_objs) {
$output .= "\n\tGene Ontology Assignments:\n";
foreach my $go_assignment (@gene_ontology_objs) {
$output .= "\t" . $go_assignment->toString();
}
}
unless (defined ($atts{-showIsoforms}) && $atts{-showIsoforms} == 0) {
foreach my $isoform ($self->get_additional_isoforms()) {
$output .= "\n\n\tISOFORM:\n" . $isoform->toString();
}
}
$output .= "\n\n"; #spacer at terminus
return ($output);
}
####
## Splice site validation section
####
=over 4
=item validate_splice_sites()
B<Description:> Validates the presence of consensus splice sites
B<Parameters:> $genomic_seq_ref
$genomic_seq_ref is a scalar reference to the string containing the genomic sequence.
B<Returns:> $errors
If the empty string ("") is returned, then no inconsistencies were identified.
=back
=cut
;
####
sub validate_splice_sites {
my $self = shift;
my $asmbl_seq_ref = shift;
unless (ref ($asmbl_seq_ref)) {
print STDERR "I require a sequence reference\n";
return (undef());
}
my $error_string = "";
my $strand = $self->{strand};
my @exons = $self->get_exons();
my $num_exons = $#exons + 1;
if ($num_exons == 1) {
#no splice sites to confirm.
return ("");
}
for (my $i = 1; $i <= $num_exons; $i++) {
my $exon_type;
if ($i == 1) {
$exon_type = "initial";
} elsif ($i == $num_exons) {
$exon_type = "terminal";
} else {
$exon_type = "internal";
}
my $exon = $exons[$i - 1];
my ($exon_end5, $exon_end3) = $exon->get_mRNA_exon_end5_end3();
my ($coord1, $coord2) = sort {$a<=>$b} ($exon_end5, $exon_end3);
## get two coordinate sets corresponding to potential splice sites
my $splice_1_start = $coord1-2-1;
my $splice_2_start = $coord2-1+1;
#print "confirming splice sites at " . ($splice_1_start +1) . " and " . ($splice_2_start + 1) . "\n"if $SEE;
my $splice_1 = substr ($$asmbl_seq_ref, $splice_1_start, 2);
my $splice_2 = substr ($$asmbl_seq_ref, $splice_2_start, 2);
my ($acceptor, $donor) = ($strand eq '+') ? ($splice_1, $splice_2) : (&reverse_complement($splice_2), &reverse_complement($splice_1));
my $check_acceptor = ($acceptor =~ /ag/i);
my $check_donor = ($donor =~ /gt|gc/i);
## associate results of checks with exon type.
if ($exon_type eq "initial" || $exon_type eq "internal") {
unless ($check_donor) {
$error_string .= "non-consensus $donor donor splice site at $coord1\n";
}
}
if ($exon_type eq "internal" || $exon_type eq "terminal") {
unless ($check_acceptor) {
$error_string .= "\tnon-consensus $acceptor acceptor splice site at $coord2\n";
}
}
}
return ($error_string);
}
=over 4
=item get_annot_text()
B<Description:> Provides basic functional annotation for a Gene_obj
B<Parameters:> none
B<Returns:> $string
$string includes locus, pub_locus, com_name, and pub_comment
=back
=cut
;
####
sub get_annot_text {
my $self = shift;
my $locus = $self->{locus};
my $pub_locus = $self->{pub_locus};
my $com_name = $self->{com_name};
my $pub_comment = $self->{pub_comment};
my $text = "";
foreach my $token ($locus, $pub_locus, $com_name, $pub_comment) {
if ($token) {
$text .= "$token ";
}
}
return ($text);
}
=over 4
=item add_isoform()
B<Description:> Adds a Gene_obj to an existing Gene_obj as an alternative splicing variant.
B<Parameters:> Gene_obj
B<Returns:> none
=back
=cut
;
sub add_isoform {
my $self = shift;
my @gene_objs = @_;
foreach my $gene_obj (@gene_objs) {
$self->{num_additional_isoforms}++;
push (@{$self->{additional_isoforms}}, $gene_obj);
}
}
=over 4
=item has_additional_isoforms()
B<Description:> Provides number of additional isoforms. Typically used as a boolean.
B<Parameters:> none
B<Returns:> number of additional isoforms (int)
If no additional isoforms exist, returns 0
boolean usage:
0 = false (has no more)
nonzero = true (has additional isoforms)
=back
=cut
sub has_additional_isoforms {
my $self = shift;
return ($self->{num_additional_isoforms});
}
=over 4
=item delete_isoforms()
B<Description:> removes isoforms stored in this Gene_obj (assigning to a new anonymous arrayref)
B<Parameters:> Gene_obj
B<Returns:> none
=back
=cut
sub delete_isoforms {
my $self = shift;
$self->{num_additional_isoforms} = 0;
$self->{additional_isoforms} = [];
}
=over 4
=item get_additional_isoforms()
B<Description:> Retrieves the additional isoforms for a given Gene_obj
B<Parameters:> none
B<Returns:> @Gene_objs
If no additional isoforms exist, an empty array is returned.
=back
=cut
sub get_additional_isoforms {
my $self = shift;
return (@{$self->{additional_isoforms}});
}
=over 4
=item get_orientation()
B<Description:> Retrieves the strand orientation of the Gene_obj
B<Parameters:> none
B<Returns:> +|-
=back
=cut
sub get_orientation {
my $self = shift;
return ($self->{strand});
}
sub get_strand { ## preferred
my $self = shift;
return($self->get_orientation());
}
=over 4
=item add_gene_ontology_objs()
B<Description:> Adds a list of Gene_ontology objects to a Gene_obj
B<Parameters:> @Gene_ontology_objs
@Gene_ontology_objs is a list of objects instantiated from Gene_ontology.pm
B<Returns:> none
=back
=cut
sub add_gene_ontology_objs {
my ($self, @ontology_objs) = @_;
push (@{$self->{GeneOntology}}, @ontology_objs);
}
=over 4
=item get_gene_ontology_objs()
B<Description:> Retrieves Gene_ontology objs assigned to the Gene_obj
B<Parameters:> none
B<Returns:> @Gene_ontology_objs
@Gene_ontology_objs are objects instantiated from package Gene_ontology (See Gene_ontology.pm)
=back
=cut
;
sub get_gene_ontology_objs {
my $self = shift;
if (ref ($self->{GeneOntology})) {
return (@{$self->{GeneOntology}});
} else {
return (());
}
}
=over 4
=item set_5prime_partial()
B<Description:> Sets the status of the is_5prime_partial attribute
B<Parameters:> 1|0
B<Returns:> none
5prime partials are partial on their 5prime end and lack start codons.
=back
=cut
sub set_5prime_partial() {
my $self = shift;
my $value = shift;
$self->{is_5prime_partial} = $value;
}
=over 4
=item set_3prime_partial()
B<Description:> Sets the is_3prime_partial status
B<Parameters:> 1|0
B<Returns:> none
3prime partials are partial on their 3prime end and lack stop codons.
=back
=cut
sub set_3prime_partial() {
my $self = shift;
my $value = shift;
$self->{is_3prime_partial} = $value;
}
=over 4
=item is_5prime_partial()
B<Description:> Retrieves the 5-prime partial status of the gene.
B<Parameters:> none
B<Returns:> 1|0
=back
=cut
sub is_5prime_partial() {
my $self = shift;
return ($self->{is_5prime_partial});
}
=over 4
=item is_3prime_partial()
B<Description:> Retrieves the 3-prime partial status of the gene.
B<Parameters:> none
B<Returns:> 1|0
=back
=cut
sub is_3prime_partial() {
my $self = shift;
return ($self->{is_3prime_partial});
}
=over 4
=item get_5prime_UTR_coords
B<Description:> returns a list of coordinate pairs corresponding to the 5\' UTR coordinates
B<Parameters:> none
B<Returns:> ([end5,end3], ...) or empty list if none exist
=back
=cut
;
sub get_5prime_UTR_coords {
my $self = shift;
my $strand = $self->get_orientation();
my @exons = $self->get_exons();
my $seen_CDS_flag = 0;
my @utr_coords;
foreach my $exon (@exons) { #relying on a sorted list
my ($exon_end5, $exon_end3) = $exon->get_coords();
if (my $cds = $exon->get_CDS_obj()) {
my ($cds_end5, $cds_end3) = $cds->get_coords();
if ($exon_end5 != $cds_end5) {
my $adj_utr_end3_coord = ($strand eq '+') ? ($cds_end5 -1) : ($cds_end5 +1);
push (@utr_coords, [$exon_end5, $adj_utr_end3_coord]);
}
$seen_CDS_flag = 1;
} else {
push (@utr_coords, [$exon_end5, $exon_end3]);
}
if ($seen_CDS_flag) {
last;
}
}
return (@utr_coords);
}
=over 4
=item get_3prime_UTR_coords
B<Description:> returns a list of coordinate pairs corresponding to the 3\' UTR coordinates
B<Parameters:> none
B<Returns:> ([end5,end3], ...) or empty list if none exist
=back
=cut
;
sub get_3prime_UTR_coords {
my $self = shift;
my $strand = $self->get_orientation();
my @exons = reverse $self->get_exons();
my @utr_coords;
my $seen_CDS_flag = 0;
foreach my $exon (@exons) { #relying on a reverse sorted list (3' exons should come first)
my ($exon_end5, $exon_end3) = $exon->get_coords();
if (my $cds = $exon->get_CDS_obj()) {
$seen_CDS_flag = 1;
my ($cds_end5, $cds_end3) = $cds->get_coords();
if ($exon_end3 != $cds_end3) {
my $adj_utr_end5_coord = ($strand eq '+') ? ($cds_end3 +1) : ($cds_end3 -1);
push (@utr_coords, [$adj_utr_end5_coord, $exon_end3]);
}
} else {
push (@utr_coords, [$exon_end5, $exon_end3]);
}
if ($seen_CDS_flag) {
last;
}
}
if (@utr_coords) {
@utr_coords = reverse @utr_coords;
}
return (@utr_coords);
}
=over 4
=item has_UTRs()
B<Description:> indicates presence of UTR annotated in Gene
B<Parameters:> none
B<Returns:> ( has_5prime_UTR() || has_3prime_UTR() )
=back
=cut
sub has_UTRs {
my $self = shift;
return ( ($self->has_5prime_UTR() || $self->has_3prime_UTR() ) );
}
####
sub has_5prime_UTR {
my $self = shift;
return (scalar ($self->get_5prime_UTR_coords()));
}
####
sub has_3prime_UTR {
my $self = shift;
return(scalar ($self->get_3prime_UTR_coords()));
}
=over 4
=item get_5prime_UTR_sequence()
B<Description:> retrieves 5prime UTR sequence
B<Parameters:> genome sequence reference
B<Returns:> string
=back
=cut
####
sub get_5prime_UTR_sequence {
my $self = shift;
my ($genome_seq_ref) = @_;
unless (ref $genome_seq_ref eq "SCALAR") {
confess "error, require genome sequence string reference";
}
unless ($self->has_5prime_UTR()) {
return "";
}
my $orientation = $self->get_orientation();
my @coords = $self->get_5prime_UTR_coords();
@coords = sort {$a->[0]<=>$b->[0]} @coords;
my $UTR_seq = "";
foreach my $coordset (@coords) {
my ($lend, $rend) = sort {$a<=>$b} @$coordset;
my $length = $rend - $lend + 1;
$UTR_seq .= substr($$genome_seq_ref, $lend - 1, $length);
}
if ($orientation eq '-') {
$UTR_seq = &reverse_complement($UTR_seq);
}
## verify:
$self->create_all_sequence_types($genome_seq_ref);
my $cDNA = $self->get_cDNA_sequence();
unless (index($cDNA, $UTR_seq) == 0) {
confess "Error, couldn't find UTR in cDNA";
}
return ($UTR_seq);
}
=over 4
=item get_3prime_UTR_sequence()
B<Description:> retrieves 5prime UTR sequence
B<Parameters:> genome sequence reference
B<Returns:> string
=back
=cut
####
sub get_3prime_UTR_sequence {
my $self = shift;
my ($genome_seq_ref) = @_;
unless (ref $genome_seq_ref eq "SCALAR") {
confess "error, require genome sequence string reference";
}
unless ($self->has_3prime_UTR()) {
return "";
}
my $orientation = $self->get_orientation();
my @coords = $self->get_3prime_UTR_coords();
@coords = sort {$a->[0]<=>$b->[0]} @coords;
my $UTR_seq = "";
foreach my $coordset (@coords) {
my ($lend, $rend) = sort {$a<=>$b} @$coordset;
my $length = $rend - $lend + 1;
$UTR_seq .= substr($$genome_seq_ref, $lend - 1, $length);
}
if ($orientation eq '-') {
$UTR_seq = &reverse_complement($UTR_seq);
}
## verify:
$self->create_all_sequence_types($genome_seq_ref);
my $cDNA = $self->get_cDNA_sequence();
my $cDNA_length = length($cDNA);
my $utr_length = length($UTR_seq);
my $utr_start_pos = $cDNA_length - $utr_length + 1;
unless ((my $cDNA_utr = lc substr($cDNA, $utr_start_pos - 1, $utr_length)) eq lc $UTR_seq) {
confess "Error, 3' UTR extracted from cDNA is different from UTR sequence extracted from genome.\n"
. "cDNA_utr:\n$cDNA_utr\nUTR_from_genome:\n$UTR_seq\n\n";
}
return ($UTR_seq);
}
=over 4
=item trim_UTRs()
B<Description:> Trims the UTR of the Gene_obj so that the Exon coordinates are identical to the CDS coordinates. Exons which lack CDS components and are completely UTR are removed.
B<Parameters:> none
B<Returns:> none
=back
=cut
;
sub trim_UTRs {
my $self = shift;
## adjust exon coordinates to CDS coordinates.
## if cds doesn't exist, rid exon:
my @new_exons;
my @exons = $self->get_exons();
foreach my $exon (@exons) {
if (my $cds = $exon->get_CDS_obj()) {
my ($exon_end5, $exon_end3) = $exon->get_coords();
my ($cds_end5, $cds_end3) = $cds->get_coords();
if ($exon_end5 != $cds_end5 || $exon_end3 != $cds_end3) {
$exon->set_coords($cds_end5, $cds_end3);
}
push (@new_exons, $exon);
}
}
$self->{mRNA_exon_objs} = 0; #clear current gene structure
$self->{mRNA_exon_objs} = \@new_exons; #replace gene structure
$self->refine_gene_object(); #update
return ($self);
}
=over 4
=item remove_CDS_exon()
B<Description:> Removes any existing CDS_exon_obj from this mRNA_exon_obj
B<Parameters:> none
B<Returns:> none
=back
=cut
sub remove_CDS_exon {
my $self = shift;
$self->{CDS_exon_obj} = 0;
}
=over 4
=item get_gene_names()
B<Description:> Retrieves gene names (primary gene name followed by secondary gene names, "$;" delimited.
B<Parameters:> none
B<Returns:> string
see $gene_obj->{gene_name}
see $gene_obj->get_secondary_names()
secondary gene names sorted lexicographically
=back
=cut
####
sub get_gene_names {
my $gene_obj = shift;
my @gene_names;
if ($gene_obj->{gene_name}) {
push (@gene_names, $gene_obj->{gene_name});
}
if (my @secondary_names = $gene_obj->get_secondary_gene_names()) {
push (@gene_names, @secondary_names);
}
my $ret_gene_names = join ("$;" , @gene_names);
return ($ret_gene_names);
}
=over 4
=item get_secondary_gene_names()
B<Description:> Retrieves secondary gene names as a "$;" delimited string.
B<Parameters:> none
B<Returns:> string
=back
=cut
####
sub get_secondary_gene_names {
my ($gene_obj) = @_;
return (sort @{$gene_obj->{secondary_gene_names}});
}
=over 4
=item get_product_names()
B<Description:> Retrieves product name, with the primary product name followed by secondary product names, delimited by "$;"
B<Parameters:> none
B<Returns:> string
see $gene_obj->{com_name} for primary product name
see $gene_obj->get_secondary_product_names()
=back
=cut
;
####
sub get_product_names {
my $gene_obj = shift;
my @product_names;
if ($gene_obj->{com_name}) {
push (@product_names, $gene_obj->{com_name});
}
if (my @secondary_names = $gene_obj->get_secondary_product_names()) {
push (@product_names, @secondary_names);
}
my $ret_product_names = join ("$;", @product_names);
return ($ret_product_names);
}
=over 4
=item get_secondary_product_names()
B<Description:> Retrieves secondary product names, delimited by "$;" and sorted lexicographically.
B<Parameters:> none
B<Returns:> string
=back
=cut
####
sub get_secondary_product_names {
my ($gene_obj) = @_;
return (sort @{$gene_obj->{secondary_product_names}});
}
=over 4
=item get_gene_symbols()
B<Description:> Retrieves primary gene symbol followed by secondary gene symbols, delimited by "$;"
B<Parameters:> none
B<Returns:> string
see $gene_obj->{gene_sym}
see $gene_obj->get_secondary_gene_symbols()
=back
=cut
;
####
sub get_gene_symbols {
my $gene_obj = shift;
my @gene_symbols;
if ($gene_obj->{gene_sym}) {
push (@gene_symbols, $gene_obj->{gene_sym});
}
if (my @secondary_symbols = $gene_obj->get_secondary_gene_symbols()) {
push (@gene_symbols, @secondary_symbols);
}
my $ret_gene_symbols = join ("$;", @gene_symbols);
return ($ret_gene_symbols);
}
=over 4
=item get_secondary_gene_symbols()
B<Description:> Retrieves secondary gene symbols, delimited by "$;" and sorted lexicographically
B<Parameters:> none
B<Returns:> string
=back
=cut
####
sub get_secondary_gene_symbols {
my ($gene_obj) = @_;
return (sort @{$gene_obj->{secondary_gene_symbols}});
}
=over 4
=item get_ec_numbers()
B<Description:> Retrieves primary EC number followed by secondary EC numbers, "$;" delimited
B<Parameters:> none
B<Returns:> string
see $gene_obj->{ec_num}
see $gene_obj->get_secondary_ec_numbers()
=back
=cut
;
####
sub get_ec_numbers {
my $gene_obj = shift;
my @ec_numbers;
if ($gene_obj->{ec_num}) {
push (@ec_numbers, $gene_obj->{ec_num});
}
if (my @secondary_ec_numbers = $gene_obj->get_secondary_ec_numbers()) {
push (@ec_numbers, @secondary_ec_numbers);
}
my $ret_ec_numbers = join ("$;", @ec_numbers);
return ($ret_ec_numbers);
}
=over 4
=item get_secondary_ec_numbers()
B<Description:> Retrieves secondary EC numbers, "$;" delimited and sorted lexicographically
B<Parameters:> none
B<Returns:> string
=back
=cut
####
sub get_secondary_ec_numbers {
my ($gene_obj) = @_;
return (sort @{$gene_obj->{secondary_ec_numbers}});
}
=over 4
=item add_secondary_gene_names()
B<Description:> Adds secondary gene name(s)
B<Parameters:> (gene_name_1, gene_name_2, ....)
Single gene name or list of gene names is allowed
B<Returns:> none
=back
=cut
####
sub add_secondary_gene_names {
my ($gene_obj, @gene_names) = @_;
push (@{$gene_obj->{secondary_gene_names}}, @gene_names);
}
=over 4
=item add_secondary_product_names()
B<Description:> Adds secondary product names
B<Parameters:> (product_name_1, product_name_2, ...)
Single or list of product names as parameter
B<Returns:> none
Primary gene name added directly as an attribute like so
$gene_obj->{gene_name} = name
=back
=cut
####
sub add_secondary_product_names {
my ($gene_obj, @product_names) = @_;
&trim_leading_trailing_ws(\@product_names);
push (@{$gene_obj->{secondary_product_names}}, @product_names);
}
=over 4
=item add_secondary_gene_symbols()
B<Description:> Add secondary gene symbols
B<Parameters:> (gene_symbol_1, gene_symbol_2, ...)
String or list context
B<Returns:> none
Primary gene_symbol added directly as attribute like so:
$gene_obj->{gene_sym} = symbol
=back
=cut
####
sub add_secondary_gene_symbols {
my ($gene_obj, @gene_symbols) = @_;
&trim_leading_trailing_ws(\@gene_symbols);
push (@{$gene_obj->{secondary_gene_symbols}}, @gene_symbols);
}
=over 4
=item add_secondary_ec_numbers()
B<Description:> Add secondary Enzyme Commission (EC) numbers
B<Parameters:> (EC_1, EC_2, ...)
String or list context
B<Returns:> none
Primary EC number added directly as an attribute like so:
$gene_obj->{ec_num} = EC_number
=back
=cut
####
sub add_secondary_ec_numbers {
my ($gene_obj, @ec_numbers) = @_;
&trim_leading_trailing_ws(\@ec_numbers);
push (@{$gene_obj->{secondary_ec_numbers}}, @ec_numbers);
}
####
sub to_alignment_GFF3_format {
my ($gene_obj, $id, $target, $source) = @_;
unless (defined $source) {
$source = ".";
}
## Note, only examines gene_obj and doesn't go deeper into alt-splicing layers, ... send isoforms in as separate objs.
unless ( (ref $gene_obj) && defined($id) && defined($target)) {
croak "Error, need gene_obj, id, and target names as params";
}
my $gff3_alignment_text = "";
my $orient = $gene_obj->get_orientation();
my $scaff = $gene_obj->{asmbl_id};
my @exons = sort {$a->{end5}<=>$b->{end5}} $gene_obj->get_exons();
if ($orient eq '-') {
@exons = reverse @exons;
}
my $match_lend = 0;
foreach my $exon (@exons) {
my ($lend, $rend) = sort {$a<=>$b} $exon->get_coords();
my $m_lend = $match_lend + 1;
my $m_rend = $match_lend + ($rend - $lend + 1);
$gff3_alignment_text .= join("\t", $scaff, $source, "match", $lend, $rend, "100", $orient, '.', # giving everything 100% identity since genome-based
"ID=$id;Target=$target $m_lend $m_rend +") . "\n";
$match_lend = $m_rend;
}
return($gff3_alignment_text);
}
####
sub to_transcript_GTF_format {
my ($gene_obj) = @_;
## no worries about protein-coding regions. Only report transcripts and exons tied to a particular gene.
## used with cufflinks package for computing FPKM values
my $gtf_text = "";
foreach my $gene ($gene_obj, $gene_obj->get_additional_isoforms()) {
my $gene_id = $gene->{TU_feat_name} || "";
my $transcript_id = $gene->{Model_feat_name} || "";
my $asmbl_id = $gene_obj->{asmbl_id};
my ($lend, $rend) = sort {$a<=>$b} $gene_obj->get_transcript_span();
my $orientation = $gene_obj->get_orientation();
my $com_name = $gene_obj->{com_name} || "";
$com_name =~ s/;/_/g;
$com_name =~ s/\"//g;
if ($gene->{gene_type} eq "protein-coding") {
my @exons = $gene->get_exons();
$gtf_text .= join("\t", $asmbl_id, ".", "transcript", $lend, $rend, ".", $orientation, ".",
"gene_id \"$gene_id\"; transcript_id \"$transcript_id\"; name \"$com_name\";") . "\n";
foreach my $exon (@exons) {
my ($lend, $rend) = sort {$a<=>$b} $exon->get_coords();
$gtf_text .= join("\t", $asmbl_id, ".", "exon", $lend, $rend, ".", $orientation, ".",
"gene_id \"$gene_id\"; transcript_id \"$transcript_id\";") . "\n";
}
}
else {
## non-protein-coding features
$gtf_text .= join("\t", $asmbl_id, ".", $gene->{gene_type}, $lend, $rend, ".", $orientation, ".",
"gene_id \"$gene_id\"; transcript_id \"$transcript_id\"; name \"$com_name\";") . "\n";
}
$gtf_text .= "\n";
}
return($gtf_text);
}
=over 4
=item to_GTF_format()
B<Description:> Outputs text corresponding to the representation of the gene in GTF format.
B<Parameters:> $genome_seq_ref, %preferences
B<Returns:> string
GTF format is described in "Current Protocols in Bioinformatics(2003)" 4.8.1-4.8.19
in "Using TWINSCAN to Predict Gene Structures in Genomic DNA Sequences".
Each line of the GTF format includes the following tab-delimited fields:
[seqname] [source] [feature] [start] [end] [score] [strand] [frame] [attributes]
This is further elaborated below:
[feature] contains one of the following: start_codon, stop_codon, CDS
[attributes] contains 'gene_id' and 'transcript_id' fields. All features of the same transcript should share the same transcript_id value. By default, the TU_feat_name and model_feat_name are used as the gene_id and transcript_id, respectively.
Using the %preferences input parameter, the preferred values or gene attributes can be used for seqname, source, gene_id, or transcript_id, each used as a key to the %preferences hash. Given the value of %preferences is a gene attribute, that attribute value will be used, otherwise, the raw value will be used.
For example: %preferences = ( seqname => 'mySeqname',
gene_id => 'pub_locus' );
Would result in 'mySeqname' used in the [seqname] field, and the $gene_obj->{pub_locus} value
Here are the defaults:
[seqname] = asmbl_id
[source] = annotation
gene_id (TU_feat_name)
transcript_id (Model_feat_name)
** Partial Genes are NOT Supported ** ( undef is returned )
** Genes with split start or stop codons are unsupported ** (undef is returned)
=back
=cut
;
sub to_GTF_format {
my $gene_obj = shift;
my ($genome_seq_ref, %preferences) = @_;
unless (ref $genome_seq_ref) {
confess "Error, need genome seq reference as param";
}
my $is_pseudogene = $gene_obj->is_pseudogene();
my $TU_feat_name = $gene_obj->{TU_feat_name};
my $model_feat_name = $gene_obj->{Model_feat_name};
# rid whitespace in identifiers
$TU_feat_name =~ s/\s+/_/g;
$model_feat_name =~ s/\s+/_/g;
my $seqname = $preferences{seqname} || $gene_obj->{asmbl_id};
my $source = $preferences{source} || $gene_obj->{source} || ".";
my $gene_id;
if (my $token = $preferences{gene_id}) {
$gene_id = $gene_obj->{$token};
} else {
$gene_id = $TU_feat_name;
}
my $transcript_id;
if (my $token = $preferences{model_id}) {
$transcript_id = $gene_obj->{$token};
} else {
$transcript_id = $model_feat_name;
}
my @exons = $gene_obj->get_exons();
my $orientation = $gene_obj->get_orientation();
my @gtf_text;
my $gene_obj_for_gtf = $gene_obj; #if got stop codon, will need to strip it off.
my $com_name = $gene_obj->{com_name};
$com_name =~ s/\s+$// if $com_name;
$com_name =~ s/[\"\']//g if $com_name;
my $name_txt = ($com_name) ? "Name \"$com_name\";" : "";
unless ($is_pseudogene) {
$gene_obj->set_CDS_phases($genome_seq_ref);
## check for start and stop codons.
my $cds_seq = uc $gene_obj->create_CDS_sequence($genome_seq_ref);
my @stop_codons = &Nuc_translator::get_stop_codons();
my $first_CDS_segment = $gene_obj->get_first_CDS_segment();
my $first_phase = $first_CDS_segment->get_phase();
my $cds_is_integral_codon_num = (length($cds_seq) % 3 == 0) ? 1 : 0;
## examine start codon:
my $init_codon = substr($cds_seq, 0, 3);
if ($first_phase == 0 && $init_codon eq 'ATG') { # got start codon.
my @start_coordsets = $gene_obj->get_start_codon_coordinates();
foreach my $start_pair (@start_coordsets) {
my ($start_lend, $start_rend) = sort {$a<=>$b} @$start_pair;
push (@gtf_text, [$seqname,
$source,
"start_codon",
$start_lend,
$start_rend,
"0",
$orientation,
"0",
"gene_id \"$gene_id\"; transcript_id \"$transcript_id\"; $name_txt"]);
}
}
my $candidate_stop_codon = uc substr($cds_seq, length($cds_seq) - 3, 3);
my @found_stop = grep { $_ eq $candidate_stop_codon } @stop_codons;
if (@found_stop) {
# got a stop codon.
# check to see that the stop codon is in-frame.
if ((length($cds_seq) - $first_phase) % 3 == 0) { # yes, stop is in frame.
my @stop_codon_coords = $gene_obj->get_stop_codon_coords();
foreach my $stop_pair (@stop_codon_coords) {
my ($stop_lend, $stop_rend) = sort {$a<=>$b} @$stop_pair;
push (@gtf_text, [$seqname,
$source,
"stop_codon",
$stop_lend,
$stop_rend,
"0",
$orientation,
"0",
"gene_id \"$gene_id\"; transcript_id \"$transcript_id\"; $name_txt"]);
}
$gene_obj_for_gtf = $gene_obj->clone_gene();
$gene_obj_for_gtf->trim_stop_codon();
}
}
}
## report the CDS regions:
foreach my $exon ($gene_obj_for_gtf->get_exons()) {
my $cds = ($is_pseudogene) ? $exon : $exon->get_CDS_exon_obj();
if ($cds) {
my $phase = ".";
unless ($is_pseudogene) {
$phase = $cds->get_phase();
if ($phase) {
$phase = ($phase == 1) ? 2 : 1; # reverse it according to GFF3 vs. GTF representation.
}
}
my ($cds_lend, $cds_rend) = sort {$a<=>$b} $cds->get_coords();
push (@gtf_text, [$seqname,
$source,
"CDS",
$cds_lend,
$cds_rend,
"0",
$orientation,
"$phase",
"gene_id \"$gene_id\"; transcript_id \"$transcript_id\"; $name_txt"]);
}
}
unless ($is_pseudogene) {
## Get UTR info:
{
for my $pair ($gene_obj->get_3prime_UTR_coords) {
my ($lend,$rend) = sort {$a<=>$b} @$pair;
push (@gtf_text, [$seqname,
$source,
"3UTR",
$lend,
$rend,
"0",
$orientation,
"0",
"gene_id \"$gene_id\"; transcript_id \"$transcript_id\"; $name_txt"] );
}
for my $pair ($gene_obj->get_5prime_UTR_coords) {
my ($lend,$rend) = sort {$a<=>$b} @$pair;
push (@gtf_text, [$seqname,
$source,
"5UTR",
$lend,
$rend,
"0",
$orientation,
"0",
"gene_id \"$gene_id\"; transcript_id \"$transcript_id\"; $name_txt" ] );
}
}
}
@gtf_text = sort {$a->[3] <=> $b->[3]} @gtf_text;
if ($orientation eq '-') {
@gtf_text = reverse @gtf_text;
}
my $GTF = "";
foreach my $gtf_row (@gtf_text) {
$GTF .= join ("\t", @$gtf_row) . "\n";
}
foreach my $isoform ($gene_obj->get_additional_isoforms()) {
$GTF .= "\n" . $isoform->to_GTF_format($genome_seq_ref, %preferences);
}
return ($GTF);
}
####
sub get_start_codon_coordinates {
my $gene_obj = shift;
my $orient = $gene_obj->get_orientation();
## just want the coordinate pairs that define the first three CDS bases.
my @cds_coords;
foreach my $exon ($gene_obj->get_exons()) {
if (my $cds = $exon->get_CDS_exon_obj()) {
my ($cds_end5, $cds_end3) = $cds->get_coords();
push (@cds_coords, [$cds_end5, $cds_end3]);
}
}
my @start_coords;
my $start_len_want = 3;
foreach my $cds_coordpair (@cds_coords) {
my ($cds_end5, $cds_end3) = @$cds_coordpair;
my $cds_seg_len = abs ($cds_end3 - $cds_end5) + 1;
my $extract_len = ($cds_seg_len < $start_len_want) ? $cds_seg_len : $start_len_want;
if ($orient eq '+') {
push (@start_coords, [$cds_end5, $cds_end5 + $extract_len - 1]);
}
else {
push (@start_coords, [$cds_end5, $cds_end5 - $extract_len + 1]);
}
$start_len_want -= $extract_len;
if ($start_len_want <= 0) { last; }
}
if ($start_len_want > 0) {
confess "Error, trouble extracting start codon coordinates from cds coordsets: " . Dumper (\@cds_coords);
}
return (@start_coords);
}
####
sub get_stop_codon_coords {
my $gene_obj = shift;
my $orient = $gene_obj->get_orientation();
## just want the coordinate pairs that define the last three CDS bases.
my @cds_coords;
foreach my $exon (reverse $gene_obj->get_exons()) {
if (my $cds = $exon->get_CDS_exon_obj()) {
my ($cds_end5, $cds_end3) = $cds->get_coords();
push (@cds_coords, [$cds_end5, $cds_end3]);
}
}
my @stop_coords;
my $stop_len_want = 3;
foreach my $cds_coordpair (@cds_coords) {
my ($cds_end5, $cds_end3) = @$cds_coordpair;
my $cds_seg_len = abs ($cds_end3 - $cds_end5) + 1;
my $extract_len = ($cds_seg_len < $stop_len_want) ? $cds_seg_len : $stop_len_want;
if ($orient eq '+') {
push (@stop_coords, [$cds_end3 - $extract_len + 1, $cds_end3]);
}
else {
push (@stop_coords, [$cds_end3, $cds_end3 + $extract_len - 1]);
}
$stop_len_want -= $extract_len;
if ($stop_len_want <= 0) { last; }
}
if ($stop_len_want > 0) {
confess "Error, trouble extracting stop codon coordinates from cds coordsets: " . Dumper (\@cds_coords);
}
return (@stop_coords);
}
####
sub trim_stop_codon {
my $gene_obj = shift;
## just trimming the last three bases from the CDS's, changing the current gene object.
my @exons = reverse $gene_obj->get_exons();
my $orient = $gene_obj->get_orientation();
my $stop_len_want = 3;
foreach my $exon (@exons) {
if (my $cds = $exon->get_CDS_exon_obj()) {
my ($cds_end5, $cds_end3) = $cds->get_coords();
my $cds_seg_len = abs ($cds_end3 - $cds_end5) + 1;
my $extract_len = ($cds_seg_len < $stop_len_want) ? $cds_seg_len : $stop_len_want;
if ($cds_seg_len == $extract_len) {
# delete it!
$exon->delete_CDS_exon_obj();
}
else {
## truncate it by extract_len
if ($orient eq '+') {
$cds->{end3} -= $extract_len;
}
else {
$cds->{end3} += $extract_len;
}
}
$stop_len_want -= $extract_len;
if ($stop_len_want <= 0) { last; }
}
}
if ($stop_len_want > 0) {
confess "Error, trouble extracting all stop codon coordinates from cds coordsets. " . $gene_obj->toString();
}
return;
}
=over 4
=item to_GFF3_format()
B<Description:> Outputs text corresponding to the representation of the gene in GFF3 format (still under development).
B<Parameters:>
B<Returns:> string
GFF3 defined at:
http://song.sourceforge.net/gff3-jan04.shtml
(some text lifted from above site provided below for reference purposes)
The format consists of 9 columns, separated by tabs or spaces. The
following unescaped characters are allowed within fields:
[a-zA-Z0-9.:^*$@!+_?-]. All other characters must must be escaped
using the URL escaping conventions. Unescaped quotation marks,
backslashes and other ad-hoc escaping conventions that have been added
to the GFF format are explicitly forbidden. The =, ; and % characters
have reserved meanings as described below, and must be escaped when
used in other contexts.
Undefined fields are replaced with the "." character, as described in
the original GFF spec.
Column 1: "seqid"
The ID of the landmark used to establish the coordinate system for the
current feature. IDs must contain alphanumeric characters.
Whitespace, if present, must be escaped using URL escaping rule
(e.g. space="%20" or "+"). Sequences must *NOT* begin with an
unescaped ">".
Column 2: "source"
The source of the feature. This is unchanged from the older GFF specs
and is not part of a controlled vocabulary.
Column 3: "type"
The type of the feature (previously called the "method"). This is
constrained to be either: (a) a term from the "lite" sequence
ontology, SOFA; or (b) a SOFA accession number. The latter
alternative is distinguished using the syntax SO:000000.
Columns 4 & 5: "start" and "end"
The start and end of the feature, in 1-based integer coordinates,
relative to the landmark given in column 1. Start is always less than
or equal to end.
For zero-length features, such as insertion sites, start equals end
and the implied site is to the right of the indicated base. This
convention holds regardless of the strandedness of the feature.
Column 6: "score"
The score of the feature, a floating point number. As in earlier
versions of the format, the semantics of the score are ill-defined.
It is strongly recommended that E-values be used for sequence
similarity features, and that P-values be used for ab initio gene
prediction features.
Column 7: "strand"
The strand of the feature. + for positive strand (relative to the
landmark), - for minus strand, and . for features that are not
stranded. In addition, ? can be used for features whose strandedness
is relevant, but unknown.
Column 8: "phase"
For features of type "exon", the phase indicates where the feature
begins with reference to the reading frame. The phase is one of the
integers 0, 1,or 2, indicating that the first base of the feature
corresponds to the first, second or last base of the codon,
respectively. This is NOT to be confused with the frame, but relates
to the relative position of the translational start in whatever strand
the feature is in.
Column 9: "attributes"
A list of feature attributes in the format tag=value. Multiple
tag=value pairs are separated by semicolons. URL escaping rules are
used for tags or values containing the following characters: ",=;".
Whitespace should be replaced with the "+" character or the %20 URL
escape. This will allow the file to survive text processing programs
that convert tabs into spaces.
These tags have predefined meanings:
ID Indicates the name of the feature. IDs must be unique
within the scope of the GFF file.
Name Display name for the feature. This is the name to be
displayed to the user. Unlike IDs, there is no requirement
that the Name be unique within the file.
Alias A secondary name for the feature. It is suggested that
this tag be used whenever a secondary identifier for the
feature is needed, such as locus names and
accession numbers. Unlike ID, there is no requirement
that Alias be unique within the file.
Parent Indicates the parent of the feature. A parent ID can be
used to group exons into transcripts, transcripts into
genes, an so forth. A feature may have multiple parents.
Target Indicates the target of a nucleotide-to-nucleotide or
protein-to-nucleotide alignment. The format of the
value is "target_id+start+end".
Gap The alignment of the feature to the target if the two are
not colinear (e.g. contain gaps). The alignment format is
taken from the CIGAR format described in the
Exonerate documentation.
(http://cvsweb.sanger.ac.uk/cgi-bin/cvsweb.cgi/exonerate
?cvsroot=Ensembl). See "THE GAP ATTRIBUTE" for a description
of this format.
Note A free text note.
Dbxref A database cross reference. See the section
"Ontology Associations and Db Cross References" for
details on the format.
Ontology_term A cross reference to an ontology term. See
the section "Ontology Associations and Db Cross References"
for details.
Multiple attributes of the same type are indicated by separating the
values with the comma "," character, as in:
Parent=AF2312,AB2812,abc-3
Note that attribute names are case sensitive. "Parent" is not the
same as "parent".
All attributes that begin with an uppercase letter are reserved for
later use. Attributes that begin with a lowercase letter can be used
freely by applications.
=back
=cut
;
sub to_GFF3_format {
my ($gene_obj, %preferences) = @_;
my $gene_id = $gene_obj->{TU_feat_name};
my $strand = $gene_obj->get_orientation();
my @noteText;
if ($gene_obj->{is_pseudogene}) {
push (@noteText, "(pseudogene)");
}
## parse preferences
my $asmbl_id = $preferences{seqid} || $gene_obj->{asmbl_id};
my $source = $preferences{source} || $gene_obj->{source} || ".";
unless ($asmbl_id) {
if ($gene_id =~ /^(\d+)/) {
$asmbl_id = $1;
} else {
die "Error, no asmbl_id from gene_obj\n";
}
}
my ($gene_lend, $gene_rend) = sort {$a<=>$b} $gene_obj->get_gene_span();
my $com_name = $gene_obj->{com_name};
unless ($com_name =~ /\w/) {
$com_name = "";
}
if ($com_name) {
# uri escape it:
$com_name = uri_escape($com_name);
}
my $gene_alias = "";
if (my $pub_locus = $gene_obj->{pub_locus}) {
$gene_alias = "Alias=$pub_locus;";
}
my $feat_type = ($gene_obj->{gene_type} eq "protein-coding") ? "gene" : $gene_obj->{gene_type};
my $gff3_text = "$asmbl_id\t$source\t$feat_type\t$gene_lend\t$gene_rend\t.\t$strand\t.\tID=$gene_id;Name=$com_name;$gene_alias\n"; ## note, non-coding gene features are currently represented by a simple single coordinate pair.
if ($gene_obj->{gene_type} eq "protein-coding") {
my $gene_obj_ref = $gene_obj;
foreach my $gene_obj ($gene_obj_ref, $gene_obj_ref->get_additional_isoforms() ) {
my $model_id = $gene_obj->{Model_feat_name};
my $model_alias = "";
if (my $model_locus = $gene_obj->{Model_pub_locus}) {
$model_alias = "Alias=$model_locus;";
}
my ($mrna_lend, $mrna_rend) = $gene_obj->get_transcript_span();
$gff3_text .= "$asmbl_id\t$source\tmRNA\t$mrna_lend\t$mrna_rend\t.\t$strand\t.\tID=$model_id;Parent=$gene_id;Name=$com_name;$model_alias\n";
## mark the first and last CDS entries (for now, an unpleasant hack!)
my @exons = $gene_obj->get_exons();
## find the first cds
foreach my $exon (@exons) {
if (my $cds = $exon->get_CDS_obj()) {
$cds->{first_cds} = 1;
last;
}
}
@exons = reverse @exons;
foreach my $exon (@exons) {
if (my $cds = $exon->get_CDS_obj()) {
$cds->{last_cds} = 1;
last;
}
}
my $prime5_partial = $gene_obj->is_5prime_partial();
my $prime3_partial = $gene_obj->is_3prime_partial();
## annotate 5' utr
if ($gene_obj->has_CDS()) {
my @prime5_utr = $gene_obj->get_5prime_UTR_coords();
if (@prime5_utr) {
my $utr_count = 0;
foreach my $coordset (@prime5_utr) {
my ($lend, $rend) = sort {$a<=>$b} @$coordset;
$utr_count++;
my $utr_id = "$model_id.utr5p$utr_count";
$gff3_text .= "$asmbl_id\t$source\tfive_prime_UTR\t$lend\t$rend\t.\t$strand\t.\tID=$utr_id;Parent=$model_id\n";
}
}
}
my $exon_counter = 0;
foreach my $exon ($gene_obj->get_exons()) {
$exon_counter++;
my ($exon_lend, $exon_rend) = sort {$a<=>$b} $exon->get_coords();
my $exon_ID_string = "";
if (my $exon_feat_name = $exon->{feat_name}) {
$exon_ID_string = "$exon_feat_name";
}
else {
$exon_ID_string = "$model_id.exon$exon_counter";
}
$gff3_text .= "$asmbl_id\t$source\texon\t$exon_lend\t$exon_rend\t.\t$strand\t.\tID=${exon_ID_string};Parent=$model_id\n";
if (my $cds_obj = $exon->get_CDS_obj()) {
my ($cds_lend, $cds_rend) = sort {$a<=>$b} $cds_obj->get_coords();
my $phase = $cds_obj->{phase};
if (defined($phase)) {
## use GFF3 definition of phase, which is how many bases to trim before encountering first base of start
if ($phase == 2) {
$phase = 1;
}
elsif ($phase == 1) {
$phase = 2;
}
# phase 0 remains 0
}
else {
$phase = "."; #use phase info if avail
}
my $cds_ID_string = "cds.$model_id";
# according to the GFF3 spec, CDS segments from the same coding region should have the same identifier.
#if (my $cds_feat_name = $cds_obj->{feat_name}) {
# $cds_ID_string = "$cds_feat_name";
#}
#else {
# $cds_ID_string = "$model_id.cds$exon_counter";
#}
my $partial_text = "";
if ($prime5_partial && $cds_obj->{first_cds}) {
$partial_text .= ";5_prime_partial=true";
}
if ($prime3_partial && $cds_obj->{last_cds}) {
$partial_text .= ";3_prime_partial=true";
}
$gff3_text .= "$asmbl_id\t$source\tCDS\t$cds_lend\t$cds_rend\t.\t$strand\t$phase\tID=${cds_ID_string};Parent=$model_id$partial_text\n";
}
}
## annotate 3' utr
if ($gene_obj->has_CDS()) {
my @prime3_utr = $gene_obj->get_3prime_UTR_coords();
if (@prime3_utr) {
my $utr_count = 0;
foreach my $coordset (@prime3_utr) {
my ($lend, $rend) = sort {$a<=>$b} @$coordset;
$utr_count++;
my $utr_id = "$model_id.utr3p$utr_count";
$gff3_text .= "$asmbl_id\t$source\tthree_prime_UTR\t$lend\t$rend\t.\t$strand\t.\tID=$utr_id;Parent=$model_id\n";
}
}
}
}
} ## end of protein-coding genes
## strip off any trailing whitespace and semicolons:
my @lines = split (/\n/, $gff3_text);
foreach my $line (@lines) {
$line =~ s/\s+$//;
$line =~ s/;$//;
}
$gff3_text = join ("\n", @lines) . "\n";
return ($gff3_text);
}
=over 4
=item to_BED_format()
B<Description:> describes gene in BED format
B<Parameters:> (uri_encode => 1|0)
B<Returns:> string
BED format described here:
http://genome.ucsc.edu/FAQ/FAQformat.html#format1
BED format
BED format provides a flexible way to define the data lines that are displayed in an annotation track. BED lines have three required fields and nine additional optional fields. The number of fields per line must be consistent throughout any single set of data in an annotation track. The order of the optional fields is binding: lower-numbered fields must always be populated if higher-numbered fields are used.
The first three required BED fields are:
1. chrom - The name of the chromosome (e.g. chr3, chrY, chr2_random) or scaffold (e.g. scaffold10671).
2. chromStart - The starting position of the feature in the chromosome or scaffold. The first base in a chromosome is numbered 0.
3. chromEnd - The ending position of the feature in the chromosome or scaffold. The chromEnd base is not included in the display of the feature. For example, the first 100 bases of a chromosome are defined as chromStart=0, chromEnd=100, and span the bases numbered 0-99.
The 9 additional optional BED fields are:
4. name - Defines the name of the BED line. This label is displayed to the left of the BED line in the Genome Browser window when the track is open to full display mode or directly to the left of the item in pack mode.
5. score - A score between 0 and 1000. If the track line useScore attribute is set to 1 for this annotation data set, the score value will determine the level of gray in which this feature is displayed (higher numbers = darker gray). This table shows the Genome Browsers translation of BED score values into shades of gray
6. strand - Defines the strand - either '+' or '-'.
7. thickStart - The starting position at which the feature is drawn thickly (for example, the start codon in gene displays).
8. thickEnd - The ending position at which the feature is drawn thickly (for example, the stop codon in gene displays).
9. itemRgb - An RGB value of the form R,G,B (e.g. 255,0,0). If the track line itemRgb attribute is set to "On", this RBG value will determine the display color of the data contained in this BED line. NOTE: It is recommended that a simple color scheme (eight colors or less) be used with this attribute to avoid overwhelming the color resources of the Genome Browser and your Internet browser.
10. blockCount - The number of blocks (exons) in the BED line.
11. blockSizes - A comma-separated list of the block sizes. The number of items in this list should correspond to blockCount.
12. blockStarts - A comma-separated list of block starts. All of the blockStart positions should be calculated relative to chromStart. The number of items in this list should correspond to blockCount.
Example:
Heres an example of an annotation track that uses a complete BED definition:
track name=pairedReads description="Clone Paired Reads" useScore=1
chr22 1000 5000 cloneA 960 + 1000 5000 0 2 567,488, 0,3512
chr22 2000 6000 cloneB 900 - 2000 6000 0 2 433,399, 0,3601
=cut
sub to_BED_format {
my $self = shift;
my %params = @_;
my $strand = $self->get_strand();
my ($coding_lend, $coding_rend) = sort {$a<=>$b} $self->get_CDS_span();
my $scaffold = $self->{asmbl_id};
my $gene_id = $self->{TU_feat_name};
my $trans_id = $self->{Model_feat_name};
my $com_name = $self->{com_name} || "";
my $score = $params{score} || 0;
if (my $alias = $self->{pub_locus}) {
$com_name = "Alias=$alias;$com_name";
}
if ($gene_id) {
$com_name = "$gene_id;$com_name";
}
if ($trans_id) {
$com_name = "ID=$trans_id;$com_name";
}
else {
$com_name = "ID=$com_name";
}
if ($params{uri_encode}) {
$com_name = uri_escape($com_name);
}
my @exons = sort {$a->{end5}<=>$b->{end5}} $self->get_exons();
my @exon_coords;
foreach my $exon (@exons) {
my ($exon_lend, $exon_rend) = sort {$a<=>$b} $exon->get_coords();
push (@exon_coords, [$exon_lend, $exon_rend]);
}
my @starts;
my @lengths;
my $gene_lend = $exon_coords[0]->[0];
my $gene_rend = $exon_coords[$#exon_coords]->[1];
foreach my $exon_coordset (@exon_coords) {
my ($exon_lend, $exon_rend) = @$exon_coordset;
my $start = $exon_lend - $gene_lend;
push (@starts, $start);
my $length = $exon_rend - $exon_lend + 1;
push (@lengths, $length);
}
## construct bed output.
$com_name =~ s/ /_/g;
my $bed_line = join("\t", $scaffold,
$gene_lend-1, $gene_rend,
$com_name,
$score,
$strand,
$coding_lend-1, $coding_rend,
"0", # rgb info - use '.' to allow user customization in IGV. Need 0 for compatibility with UCSC browser.
scalar(@lengths),
join(",", @lengths),
join(",", @starts)
) . "\n";
foreach my $isoform ($self->get_additional_isoforms()) {
$bed_line .= $isoform->to_BED_format(%params);
}
return($bed_line);
}
# static method, returns gene object.
sub BED_line_to_gene_obj {
my ($bed_line) = @_;
if (ref $bed_line) {
confess "Error, static method, just provide bed text line, returns gene_obj";
}
my @x = split(/\t/, $bed_line);
my $scaff = $x[0];
my $gene_lend = $x[1] + 1;
my $gene_rend = $x[2];
my $com_name = $x[3];
my $score = $x[4];
my $orient = $x[5];
if ($orient eq '*') {
$orient = '+';
}
my $coding_lend = $x[6] + 1;
my $coding_rend = $x[7];
my $rgb_color = $x[8];
my $num_exons = $x[9];
my $lengths_text = $x[10];
my $exon_relative_starts_text = $x[11];
my @lengths = split(/,/, $lengths_text);
my @exon_relative_starts = split(/,/, $exon_relative_starts_text);
my @exons;
while (@lengths) {
my $len = shift @lengths;
my $start = shift @exon_relative_starts;
my $exon_lend = $gene_lend + $start;
my $exon_rend = $exon_lend + $len - 1;
print "Len: $len, start=$start ====> $exon_lend - $exon_rend\n" if $DEBUG;
push (@exons, [$exon_lend, $exon_rend]);
}
print "Coding: $coding_lend-$coding_rend, Exons: " . Dumper (\@exons) if $DEBUG;
my $gene_obj = new Gene_obj();
$gene_obj->build_gene_obj_exons_n_cds_range(\@exons, $coding_lend, $coding_rend, $orient);
$gene_obj->{com_name} = $com_name;
$gene_obj->{asmbl_id} = $scaff;
$com_name =~ s/\s+/\|/g; # reformat as an identifier with no whitespace
$gene_obj->{TU_feat_name} = "$com_name";
$gene_obj->{Model_feat_name} = "m.$com_name";
return($gene_obj);
}
## Private, remove leading and trailing whitespace characters:
sub trim_leading_trailing_ws {
my ($ref) = @_;
if (ref $ref eq "SCALAR") {
$$ref =~ s/^\s+|\s+$//g;
} elsif (ref $ref eq "ARRAY") {
foreach my $element (@$ref) {
$element =~ s/^\s+|\s+$//g;
}
} else {
my $type = ref $ref;
die "Currently don't support trim_leading_trailing_ws(ref type: $type)\n";
}
}
=over 4
=item to_GTF2_format()
B<Description:> provides gene in GTF2 format
B<Parameters:> genome_seq_ref, [properties_href]
B<Returns:> text
properties_href encodes preferences like so
properties_href = {
seqname => tigr_asmbl_id_1000, # by default, asmbl_id is used as encoded in gene_obj
source => MyGenePrediction, # by default, set to "TIGR"
include_comments => 0, # turned on by default, indicating partial or pseudogenes with preceding comment lines
}
The GTF2 format is described here:
http://genes.cs.wustl.edu/GTF2.html
as follows:
GTF2 format (Revised Ensembl GTF)
Gene transfer format. This borrows from GFF, but has additional structure that warrants a separate definition and format name.
NEW! Validating Parser for GTF
Structure is as GFF, so the fields are:
<seqname> <source> <feature> <start> <end> <score> <strand> <frame> [attributes] [comments]
Here is a simple example with 3 translated exons. Order of rows is not important.
AB000381 Twinscan CDS 380 401 . + 0 gene_id "001"; transcript_id "001.1";
AB000381 Twinscan CDS 501 650 . + 2 gene_id "001"; transcript_id "001.1";
AB000381 Twinscan CDS 700 707 . + 2 gene_id "001"; transcript_id "001.1";
AB000381 Twinscan start_codon 380 382 . + 0 gene_id "001"; transcript_id "001.1";
AB000381 Twinscan stop_codon 708 710 . + 0 gene_id "001"; transcript_id "001.1";
The whitespace in this example is provided only for readability. In GTF, fields must be separated by a single TAB and no white space.
<seqname>
The FPC contig ID from the Golden Path.
<source>
The source column should be a unique label indicating where the annotations came from --- typically the name of either a prediction program or a public database.
<feature>
The following feature types are required: "CDS", "start_codon", "stop_codon". The feature "exon" is optional, since this project will not evaluate predicted splice sites outside of protein coding regions. All other features will be ignored.
CDS represents the coding sequence starting with the first translated codon and proceeding to the last translated codon. Unlike Genbank annotation, the stop codon is not included in the CDS for the terminal exon.
<start> <end>
Integer start and end coordinates of the feature relative to the beginning of the sequence named in <seqname>. <start> must be less than or equal to <end>. Sequence numbering starts at 1. Values of <start> and <end> that extend outside the reference sequence are technically acceptable, but they are discouraged for purposes of this project.
<score>
The score field will not be used for this project, so you can either provide a meaningful float or replace it by a dot.
<frame>
0 indicates that the first whole codon of the reading frame is located at 5'-most base. 1 means that there is one extra base before the first codon and 2 means that there are two extra bases before the first codon. Note that the frame is not the length of the CDS mod 3.
Here are the details excised from the GFF spec. Important: Note comment on reverse strand.
'0' indicates that the specified region is in frame, i.e. that its first base corresponds to the first base of a codon. '1' indicates that there is one extra base, i.e. that the second base of the region corresponds to the first base of a codon, and '2' means that the third base of the region is the first base of a codon. If the strand is '-', then the first base of the region is value of <end>, because the corresponding coding region will run from <end> to <start> on the reverse strand.
[attributes]
All four features have the same two mandatory attributes at the end of the record:
* gene_id value; A globally unique identifier for the genomic source of the transcript
* transcript_id value; A globally unique identifier for the predicted transcript.
These attributes are designed for handling multiple transcripts from the same genomic region. Any other attributes or comments must appear after these two and will be ignored.
Attributes must end in a semicolon which must then be separated from the start of any subsequent attribute by exactly one space character (NOT a tab character).
Textual attributes should be surrounded by doublequotes.
Here is an example of a gene on the negative strand. Larger coordinates are 5' of smaller coordinates. Thus, the start codon is 3 bp with largest coordinates among all those bp that fall within the CDS regions. Similarly, the stop codon is the 3 bp with coordinates just less than the smallest coordinates within the CDS regions.
AB000123 Twinscan CDS 193817 194022 . - 2 gene_id "AB000123.1"; transcript_id "AB00123.1.2";
AB000123 Twinscan CDS 199645 199752 . - 2 gene_id "AB000123.1"; transcript_id "AB00123.1.2";
AB000123 Twinscan CDS 200369 200508 . - 1 gene_id "AB000123.1"; transcript_id "AB00123.1.2";
AB000123 Twinscan CDS 215991 216028 . - 0 gene_id "AB000123.1"; transcript_id "AB00123.1.2";
AB000123 Twinscan start_codon 216026 216028 . - . gene_id "AB000123.1"; transcript_id "AB00123.1.2";
AB000123 Twinscan stop_codon 193814 193816 . - . gene_id "AB000123.1"; transcript_id "AB00123.1.2";
Note the frames of the coding exons. For example:
1. The first CDS (from 216028 to 215991) always has frame zero.
2. Frame of the 1st CDS =0, length =38. (frame - length) % 3 = 1, the frame of the 2nd CDS.
3. Frame of the 2nd CDS=1, length=140. (frame - length) % 3 = 2, the frame of the 3rd CDS.
4. Frame of the 3rd CDS=2, length=108. (frame - length) % 3 = 2, the frame of the terminal CDS.
5. Alternatively, the frame of terminal CDS can be calculated without the rest of the gene. Length of the terminal CDS=206. length % 3 =2, the frame of the terminal CDS.
Here is an example in which the "exon" feature is used. It is a 5 exon gene with 3 translated exons.
AB000381 Twinscan exon 150 200 . + . gene_id "AB000381.000"; transcript_id "AB000381.000.1";
AB000381 Twinscan exon 300 401 . + . gene_id "AB000381.000"; transcript_id "AB000381.000.1";
AB000381 Twinscan CDS 380 401 . + 0 gene_id "AB000381.000"; transcript_id "AB000381.000.1";
AB000381 Twinscan exon 501 650 . + . gene_id "AB000381.000"; transcript_id "AB000381.000.1";
AB000381 Twinscan CDS 501 650 . + 2 gene_id "AB000381.000"; transcript_id "AB000381.000.1";
AB000381 Twinscan exon 700 800 . + . gene_id "AB000381.000"; transcript_id "AB000381.000.1";
AB000381 Twinscan CDS 700 707 . + 2 gene_id "AB000381.000"; transcript_id "AB000381.000.1";
AB000381 Twinscan exon 900 1000 . + . gene_id "AB000381.000"; transcript_id "AB000381.000.1";
AB000381 Twinscan start_codon 380 382 . + 0 gene_id "AB000381.000"; transcript_id "AB000381.000.1";
AB000381 Twinscan stop_codon 708 710 . + 0 gene_id "AB000381.000"; transcript_id "AB000381.000.1";
=back
=cut
sub to_GTF2_format () {
my $self = shift;
my $genomic_seq_ref = shift;
my $properties_href = shift;
unless ($properties_href) {
$properties_href = {};
}
## need to adjust my frame definition so it's consistent with requirements above in spec.
my $frame_convert = sub {
my $phase = shift;
my %frame = ( 0 => 0,
1 => 2,
2 => 1 );
return ($frame{$phase});
};
my $gtf2_text = "";
my $gene_obj = $self;
my $asmbl_id = $properties_href->{seqname} || $gene_obj->{asmbl_id} || die "Error, no asmbl_id as gene_obj att";
my $source = $properties_href->{source} || "TIGR";
my $gene_id = $gene_obj->{TU_feat_name};
my $model_id = $gene_obj->{Model_feat_name};
my $strand = $gene_obj->get_orientation();
my $comment_line = "";
if ($gene_obj->is_pseudogene()) {
$comment_line .= "$model_id=pseudogene ";
}
if ( $gene_obj->{gene_type} eq "protein-coding") {
if (! $gene_obj->is_pseudogene()) {
$gene_obj->set_CDS_phases($genomic_seq_ref);
# also resets the 5' and 3' partiality attributes based on the longest orf.
if ($gene_obj->is_5prime_partial()) {
$comment_line .= "$model_id=5'partial ";
}
else {
$gene_obj->validate_start_codon();
}
if ($gene_obj->is_3prime_partial() ) {
$comment_line .= "$model_id=3'partial ";
}
else {
$gene_obj->validate_stop_codon();
}
}
my @stop_codon_objs;
my @start_codons;
if (! $gene_obj->is_pseudogene()) {
if (! $gene_obj->is_3prime_partial()) {
@stop_codon_objs = $gene_obj->_remove_stop_codons();
unless (@stop_codon_objs) {
confess $gene_obj->toString() . "Error, no stop codon objs retrieved for non 3' partial gene";
}
}
if (! $gene_obj->is_5prime_partial()) {
@start_codons = $self->_extract_start_codons();
unless (@start_codons) {
confess $gene_obj->toString() . "Error, no start codon extracted for non 5'partial gene.";
}
}
}
foreach my $start_codon (@start_codons) {
my ($start_lend, $start_rend) = sort {$a<=>$b} $start_codon->get_coords();
my $phase = &$frame_convert($start_codon->{phase});
$gtf2_text .= "$asmbl_id\t$source\tstart_codon\t$start_lend\t$start_rend\t.\t$strand\t$phase\tgene_id \"$gene_id\"; transcript_id \"$model_id\";\n";
}
foreach my $exon ($gene_obj->get_exons()) {
my ($exon_lend, $exon_rend) = sort {$a<=>$b} $exon->get_coords();
$gtf2_text .= "$asmbl_id\t$source\texon\t$exon_lend\t$exon_rend\t.\t$strand\t.\tgene_id \"$gene_id\"; transcript_id \"$model_id\";\n";
if ($gene_obj->is_pseudogene()) { next; } # don't bother trying to report nonsensical CDSs.
if (my $cds_obj = $exon->get_CDS_obj()) {
my ($cds_lend, $cds_rend) = sort {$a<=>$b} $cds_obj->get_coords();
my $phase = $cds_obj->{phase};
unless (defined($phase)) {
die "Error, no phase defined for cds($cds_lend-$cds_rend) of gene" . $gene_obj->toString();
}
$phase = &$frame_convert($phase);
$gtf2_text .= "$asmbl_id\t$source\tCDS\t$cds_lend\t$cds_rend\t.\t$strand\t$phase\tgene_id \"$gene_id\"; transcript_id \"$model_id\";\n";
}
}
foreach my $stop_codon (@stop_codon_objs) {
my ($stop_lend, $stop_rend) = sort {$a<=>$b} $stop_codon->get_coords();
my $phase = &$frame_convert($stop_codon->{phase});
$gtf2_text .= "$asmbl_id\t$source\tstop_codon\t$stop_lend\t$stop_rend\t.\t$strand\t$phase\tgene_id \"$gene_id\"; transcript_id \"$model_id\";\n";
}
foreach my $isoform ($gene_obj->get_additional_isoforms() ) {
$gtf2_text .= $isoform->to_GTF2_format($genomic_seq_ref, $properties_href);
}
}
if ($comment_line) {
# prefix with \# to actually comment it in the file
$comment_line = "#$comment_line\n";
}
my $comment_flag = $properties_href->{include_comments};
if (defined ($comment_flag) && $comment_flag == 0) {
$comment_line = ""; # clear it
}
return ($comment_line . $gtf2_text);
}
sub _extract_start_codons {
my $self = shift;
## 5' partiality attribute is trusted here !!!
if ($self->is_5prime_partial()) {
return();
}
my @exons = $self->get_exons();
my $orientation = $self->get_orientation();
my @start_codons;
my $found_cds_flag = 0;
for (my $i = 0; $i <= $#exons; $i++) {
if (my $cds = $exons[$i]->get_CDS_obj()) {
# found first cds
$found_cds_flag = 1;
my ($cds_end5, $cds_end3) = $cds->get_coords();
my $cds_len = $cds->length();
if ($cds_len >= 3) {
## got start codon in entirety
if ($orientation eq '+') {
push (@start_codons, CDS_exon_obj->new($cds_end5, $cds_end5+2)->set_phase(0));
last;
}
else {
push (@start_codons, CDS_exon_obj->new($cds_end5, $cds_end5-2)->set_phase(0));
last;
}
}
else {
## split start codon
push (@start_codons, $cds); # add current cds as start codon part
my $missing_length = 3 - $cds_len;
## examine next cds exon for part of it:
my $next_cds = $exons[$i+1]->get_CDS_obj();
unless (ref $next_cds) {
die "Error, no next cds for split start codon" . $self->toString();
}
my ($next_cds_end5, $next_cds_end3) = $next_cds->get_coords();
my $next_cds_len = $next_cds->length();
if ($next_cds_len >= $missing_length) {
# great, this has everything we need
if ($orientation eq '+') {
push (@start_codons,
CDS_exon_obj->new($next_cds_end5, $next_cds_end5 + $missing_length-1)->set_phase($next_cds->{phase}));
last;
}
else {
push (@start_codons,
CDS_exon_obj->new($next_cds_end5, $next_cds_end5 - $missing_length + 1)->set_phase($next_cds->{phase}));
last;
}
}
else {
## another split start codon portion. Just add the current cds, and get the first bp from the next cds
push (@start_codons, $next_cds);
my $final_cds = $exons[$i+2]->get_CDS_obj();
unless (ref $final_cds) {
die "Error getting final cds of three-part split start codon";
}
unless ($final_cds->{phase} == 2) {
die "Error, final cds of three-part stop codon is not in phase 2 ";
}
my ($final_cds_end5, $final_cds_end3) = $final_cds->get_coords();
push (@start_codons,
CDS_exon_obj->new($final_cds_end5, $final_cds_end5)->set_phase(2));
last;
}
} # end of split start codon
} # end of found cds
} # end of foreach exon
unless ($found_cds_flag) {
die "Error, no cds exon found in search of start codon";
}
unless (@start_codons) {
die "Error, no start codons found";
}
## ensure start codons sum to 3
my $sum_len = 0;
foreach my $start_codon (@start_codons) {
$sum_len += $start_codon->length();
}
unless ($sum_len == 3) {
print "Error, sum len of start codons != 3 ( = $sum_len, instead) " . $self->toString() . "starts:\n";
my $i=0;
foreach my $start (@start_codons) {
$i++;
print "start($i): " . $start->toString();
}
die;
}
return (@start_codons);
}
sub _remove_stop_codons {
my $self = shift;
## 3' partiality attribute is trusted here !!!
if ($self->is_3prime_partial()) {
return ();
}
my $orientation = $self->get_orientation();
my @exons = reverse $self->get_exons(); # examining exons in reverse order, starting from stop codon direction.
my @stop_codons;
my $found_cds_flag = 0;
## find first exon
for (my $i=0; $i <= $#exons; $i++) {
if (my $cds = $exons[$i]->get_CDS_obj()) {
$found_cds_flag = 1;
my ($cds_end5, $cds_end3) = $cds->get_coords();
my $cds_length = $cds->length();
if ($cds_length > 3) {
## cds exon encodes more than just the stop codon
if ($orientation eq '+') {
$cds->{end3} -= 3;
push (@stop_codons, CDS_exon_obj->new($cds_end3 - 2, $cds_end3)->set_phase(0));
}
else {
$cds->{end3} += 3;
push (@stop_codons, CDS_exon_obj->new($cds_end3 + 2, $cds_end3)->set_phase(0));
}
last;
}
elsif ($cds_length == 3) {
## Just a stop codon exon. We can remove it.
push (@stop_codons, $cds);
$exons[$i]->{CDS_exon_obj} = 0; # nullified
last;
}
else {
## cds exon encodes a split stop codon
push (@stop_codons, $cds); # just add the last portion of stop codon
$exons[$i]->{CDS_exon_obj} = 0; # nullified
## check next portion of cds exon to see if it contains the rest of the stop
my $next_exon = $exons[$i+1];
unless (ref $next_exon) {
die "Error, incomplete stop codon and not enough exons! ";
}
my $missing_stop_length = 3 - $cds_length;
my $next_cds_obj = $next_exon->get_CDS_obj();
unless (ref $next_cds_obj) {
die "Error, next cds obj is missing!";
}
my $next_cds_length = $next_cds_obj->length();
my ($cds_end5, $cds_end3) = $next_cds_obj->get_coords();
if ($next_cds_length <= $missing_stop_length) {
## encodes only the second part of the stop codon
# add and nullify
push (@stop_codons, $next_cds_obj);
$next_exon->{CDS_exon_obj} = 0;
## get the very last part of the stop
$missing_stop_length -= $next_cds_length;
if ($missing_stop_length > 0) {
## must be still missing the first bp of the stop codon
if ($missing_stop_length != 1) {
die "Error, too much of the stop codon is left (missing_length = $missing_stop_length). Should only be 1 ";
}
my $next_exon = $exons[$i+2];
unless (ref $next_exon) {
die "Error, second next exon is unavail ";
}
my $next_cds_obj = $next_exon->get_CDS_obj();
unless (ref $next_cds_obj) {
die "Error, second next cds obj is unavail";
}
my $cds_length = $next_cds_obj->length();
my ($cds_end5, $cds_end3) = $next_cds_obj->get_coords();
if ($cds_length > 1) {
if ($orientation eq '+') {
$next_cds_obj->{end3}-=1;
push (@stop_codons, CDS_exon_obj->new($cds_end3, $cds_end3)->set_phase(0));
}
else {
$next_cds_obj->{end3}+=1;
push (@stop_codons, CDS_exon_obj->new($cds_end3, $cds_end3)->set_phase(0));
}
}
}
}
else {
# split stop codon
#missing length of cds exon is present in the second portion of the stop
if ($orientation eq '+') {
$next_cds_obj->{end3} -= $missing_stop_length;
push (@stop_codons, CDS_exon_obj->new($cds_end3 - $missing_stop_length + 1, $cds_end3)->set_phase(0));
}
else {
$next_cds_obj->{end3} += $missing_stop_length;
push (@stop_codons, CDS_exon_obj->new($cds_end3 + $missing_stop_length -1, $cds_end3)->set_phase(0));
}
}
} # end of split stop codon
last;
} # end of found cds obj
} # end of foreach exon
unless ($found_cds_flag) {
die "Error, no cds exon was found. ";
}
unless (@stop_codons) {
die "Error, no stop codons extracted from non-partial gene.";
}
@stop_codons = reverse @stop_codons; # reorder according to gene direction
## make sure sum (stop_codons) length == 3
my $sum_len = 0;
foreach my $stop_codon (@stop_codons) {
$sum_len += $stop_codon->length();
}
if ($sum_len != 3) {
print "Error, stop codons sum length != 3 ( = $sum_len, instead) " . $self->toString();
my $i=0;
foreach my $stop_codon (@stop_codons) {
print "stop($i): " . $stop_codon->toString();
}
die;
}
return (@stop_codons);
}
sub has_CDS {
my $self = shift;
foreach my $exon ($self->get_exons()) {
if (ref ($exon->get_CDS_obj())) {
return (1);
}
}
return (0); # no cds entry found
}
####
sub set_CDS_phases_from_init_phase {
my ($self, $init_phase) = @_;
my @exons = $self->get_exons();
my $curr_cds_len = $init_phase;
foreach my $exon (@exons) {
if (my $cds = $exon->get_CDS_obj()) {
$cds->set_phase($curr_cds_len % 3);
my $cds_len = $cds->length();
$curr_cds_len += $cds_len;
}
}
return;
}
sub set_CDS_phases {
my ($self, $genomic_seq_ref) = @_;
my $start_pos = 1;
if ($self->has_CDS() && ! $self->is_pseudogene()) {
$self->create_all_sequence_types($genomic_seq_ref);
my $cds_sequence = $self->get_CDS_sequence();
my $protein_seq = $self->get_protein_sequence();
## first, clear the partial attributes:
$self->set_5prime_partial(0);
$self->set_3prime_partial(0);
if ($protein_seq !~ /^M/) {
# lacks start codon
$self->set_5prime_partial(1);
}
if ($protein_seq !~ /\*$/) {
# lacks stop codon
$self->set_3prime_partial(1);
}
$start_pos = $self->_get_cds_start_pos($cds_sequence);
my $first_phase = $start_pos - 1;
my @exons = $self->get_exons();
my @cds_objs;
foreach my $exon (@exons) {
my $cds = $exon->get_CDS_obj();
if (ref $cds) {
push (@cds_objs, $cds);
}
}
my $cds_obj = shift @cds_objs;
$cds_obj->{phase} = $first_phase;
my $cds_length = abs ($cds_obj->{end3} - $cds_obj->{end5}) + 1;
$cds_length -= $first_phase;
while (@cds_objs) {
my $next_cds_obj = shift @cds_objs;
$next_cds_obj->{phase} = $cds_length % 3;
$cds_length += abs ($next_cds_obj->{end3} - $next_cds_obj->{end5}) + 1;
}
}
foreach my $isoform ($self->get_additional_isoforms()) {
$isoform->set_CDS_phases($genomic_seq_ref);
}
return;
}
sub get_first_CDS_segment {
my $gene_obj = shift;
my @exons = $gene_obj->get_exons();
foreach my $exon (@exons) {
if (my $cds = $exon->get_CDS_exon_obj()) {
return ($cds);
}
}
return undef;
}
sub _get_cds_start_pos {
my ($self, $cds_sequence) = @_;
my $cds_length = length($cds_sequence);
# if cds is set of triplets, assume translate at codon pos 1.
my $codon_start;
## must determine where translation starts:
my $new_orfFinder = new Longest_orf();
$new_orfFinder->allow_partials();
$new_orfFinder->forward_strand_only();
my $longest_orf = $new_orfFinder->get_longest_orf($cds_sequence);
unless (ref $longest_orf) {
die "No longest ORF found in sequence";
}
## examine the first three ORFs, prefer long orf with stop codon.
my $orfPos = $longest_orf->{start}; #init to first, longest orf.
unless (defined $orfPos) {
die "Error, orfPos not defined! " . Dumper ($longest_orf);
}
my $bestOrfPos;
my @allOrfs = $new_orfFinder->orfs();
for my $orfIndex (0..2) {
my $orf = $allOrfs[$orfIndex];
if ($orf) {
my $start = $orf->{start};
my $length = $orf->{length};
my $protein = $orf->{protein};
if ($length > $cds_length - 3 && $start <= 3 && $protein =~ /\*$/) {
unless ($bestOrfPos) {
$bestOrfPos = $start;
}
}
}
}
if ($bestOrfPos && $bestOrfPos != $orfPos) {
$orfPos = $bestOrfPos;
}
if ($orfPos >3) {
confess "Error, longest ORF is found at position $orfPos, and should be between 1 and 3. What's wrong with your gene?" . $self->toString();
}
$codon_start = $orfPos;
return ($codon_start);
}
=over 4
=item dispose()
B<Description:> Sets all attributes = 0, hopefully to faciliate targeting for garbage collection. (experimental method)
B<Parameters:> none
B<Returns:> none
=back
=cut
sub dispose {
my $self = shift;
foreach my $att (keys %$self) {
$self->{$att} = 0;
}
}
sub DESTROY {
my $self = shift;
warn "DESTROYING gene_obj: " . $self->{TU_feat_name} . "," . $self->{Model_feat_name} . "\n" if $main::DEBUG;
}
sub validate_start_codon {
## requires that you have the CDS sequence already set
my $self = shift;
my $cds_sequence = $self->get_CDS_sequence() or confess "Error, cannot get CDS sequence. It must be built prior to calling this method";
## currently, only trust Met start codons.
my $start_codon = uc substr($cds_sequence, 0, 3);
if ($start_codon ne "ATG") {
die $self->toString() . "Error, start codon is not M (codon $start_codon instead)!";
# call within an eval block to catch exception
}
}
sub validate_stop_codon {
## requires that you have the CDS sequence already set
my $self = shift;
my $cds_sequence = $self->get_CDS_sequence() or confess "Error, cannot get CDS sequence. It must be built prior to calling this method";
my @stop_codons = &Nuc_translator::get_stop_codons();
my $curr_stop_codon = substr($cds_sequence, length($cds_sequence)-3, 3);
my $found_stop_codon_flag = 0;
foreach my $stop (@stop_codons) {
if ($stop eq $curr_stop_codon) {
$found_stop_codon_flag = 1;
last;
}
}
unless ($found_stop_codon_flag) {
die $self->toString() . "Error, stop codon $curr_stop_codon is not an acceptable stop codon: [@stop_codons]\n";
}
}
######################################################################################################################################
######################################################################################################################################
=head1 NAME
package mRNA_exon_obj
=cut
=head1 DESCRIPTION
The mRNA_exon_obj represents an individual spliced mRNA exon of a gene. The coordinates of the exon can be manipulated, and the mRNA_exon_obj can contain a single CDS_exon_obj. A mRNA_exon_obj lacking a CDS_exon_obj component is an untranslated (UTR) exon.
A mature Gene_obj is expected to have at least one mRNA_exon_obj component.
=cut
package mRNA_exon_obj;
use strict;
use warnings;
use Storable qw (store retrieve freeze thaw dclone);
=over 4
=item new()
B<Description:> Instantiates an mRNA_exon_obj
B<Parameters:> <(end5, end3)>
The end5 and end3 coordinates can be optionally passed into the constructor to set these attributes. Alternatively, the set_coords() method can be used to set these values.
B<Returns:> $mRNA_exon_obj
=back
=cut
;
sub new {
shift;
my $self = { end5 => 0, # stores end5 of mRNA exon
end3 => 0, # stores end3 of mRNA exon
CDS_exon_obj => 0, # stores object reference to CDS_obj
feat_name => 0, # stores TIGR temp id
strand => undef, # +|-
};
# end5 and end3 can be included as parameters in constructor.
if (@_) {
my ($end5, $end3) = @_;
if (defined($end5) && defined($end3)) {
$self->{end5} = $end5;
$self->{end3} = $end3;
}
}
bless ($self);
return ($self);
}
=over 4
=item get_CDS_obj()
B<Description:> Retrieves the CDS_exon_obj component of this mRNA_exon_obj
B<Parameters:> none
B<Returns:> $cds_exon_obj
If no CDS_exon_obj is attached, returns 0
=back
=cut
;
sub get_CDS_obj {
my $self = shift;
return ($self->{CDS_exon_obj});
}
## alias
sub get_CDS_exon_obj {
my $self = shift;
return ($self->get_CDS_obj());
}
=over 4
=item get_mRNA_exon_end5_end3()
B<Description:> Retrieves the end5, end3 coordinates of the exon
**Method Deprecated**, use get_coords()
B<Parameters:> none
B<Returns:> (end5, end3)
=back
=cut
sub get_mRNA_exon_end5_end3 {
my $self = shift;
return ($self->{end5}, $self->{end3});
}
=over 4
=item set_CDS_exon_obj()
B<Description:> Sets the CDS_exon_obj of the mRNA_exon_obj
B<Parameters:> $cds_exon_obj
B<Returns:> none
=back
=cut
;
sub set_CDS_exon_obj {
my $self = shift;
my $ref = shift;
if (ref($ref)) {
$self->{CDS_exon_obj} = $ref;
}
}
####
sub delete_CDS_exon_obj {
my $self = shift;
$self->{CDS_exon_obj} = undef;
return;
}
=over 4
=item add_CDS_exon_obj()
B<Description:> Instantiates and adds a new CDS_exon_obj to the mRNA_exon_obj given the CDS coordinates.
B<Parameters:> (end5, end3)
B<Returns:> none
=back
=cut
sub add_CDS_exon_obj {
my $self = shift;
my ($end5, $end3) = @_;
my $cds_obj = CDS_exon_obj->new ($end5, $end3);
$self->set_CDS_exon_obj($cds_obj);
}
=over 4
=item set_feat_name()
B<Description:> Sets the feat_name attribute of the mRNA_exon_obj
B<Parameters:> $feat_name
B<Returns:> none
=back
=cut
sub set_feat_name {
my $self = shift;
my $feat_name = shift;
$self->{feat_name} = $feat_name;
}
=over 4
=item clone_exon()
B<Description:> Creates a deep clone of this mRNA_exon_obj, using dclone() of Storable.pm
B<Parameters:> none
B<Returns:> $mRNA_exon_obj
=back
=cut
sub clone_exon {
my $self = shift;
my $clone_exon = dclone($self);
return ($clone_exon);
}
=over 4
=item get_CDS_end5_end3 ()
B<Description:> Retrieves end5, end3 of the CDS_exon_obj component of this mRNA_exon_obj
B<Parameters:> none
B<Returns:> (end5, end3)
An empty array is returned if no CDS_exon_obj is attached.
=back
=cut
sub get_CDS_end5_end3 {
my $self = shift;
my $cds_obj = $self->get_CDS_obj();
if ($cds_obj) {
return ($cds_obj->get_CDS_end5_end3());
} else {
return ( () );
}
}
=over 4
=item get_coords()
B<Description:> Retrieves the end5, end3 coordinates of this mRNA_exon_obj
B<Parameters:> none
B<Returns:> (end5, end3)
=back
=cut
sub get_coords {
my $self = shift;
return ($self->get_mRNA_exon_end5_end3());
}
=over 4
=item set_coords()
B<Description:> Sets the end5, end3 coordinates of the mRNA_exon_obj
B<Parameters:> (end5, end3)
B<Returns:> none
=back
=cut
## simpler coord setting (end5, end3)
sub set_coords {
my $self = shift;
my $end5 = shift;
my $end3 = shift;
$self->{end5} = $end5;
$self->{end3} = $end3;
}
=over 4
=item get_strand()
B<Description:> Retrieves the orientation of the mRNA_exon_obj based on gene models transcribed orientation.
B<Parameters:> none
B<Returns:> +|-|undef
If end5 == end3, strand orientation cannot be inferred based on coordinates alone, so undef is returned.
=back
=cut
;
sub get_orientation {
# determine positive or reverse orientation
my $self = shift;
return ($self->{strand});
}
sub get_strand { ## preferred
my $self = shift;
return($self->get_orientation());
}
####
sub merge_exon {
my $self = shift;
my $other_exon = shift;
my $cds = $self->get_CDS_exon_obj();
my $other_cds = $other_exon->get_CDS_exon_obj();
if ($other_cds) {
if ($cds) {
$cds->merge_CDS($other_cds);
}
else {
# current exon lacks cds. Set this one to it.
$self->set_CDS_exon_obj($other_cds);
}
}
## merge the exons.
my @coords = sort {$a<=>$b} ($self->get_coords(), $other_exon->get_coords());
my $lend = shift @coords;
my $rend = pop @coords;
my ($new_end5, $new_end3) = ($self->get_orientation() eq '+') ? ($lend, $rend) : ($rend, $lend);
$self->set_coords($new_end5, $new_end3);
return;
}
=over 4
=item toString()
B<Description:> Provides a textual description of the mRNA_exon_obj
B<Parameters:> none
B<Returns:> $text
=back
=cut
;
sub toString {
my $self = shift;
my @coords = $self->get_mRNA_exon_end5_end3();
my $feat_name = $self->{feat_name};
my $text = "";
if ($feat_name) {
$text .= "feat_name: $feat_name\t";
}
$text .= "end5 " . $coords[0] . "\tend3 " . $coords[1] . "\n";
return ($text);
}
sub length {
my $self = shift;
my $len = abs ($self->{end5} - $self->{end3}) + 1;
return($len);
}
##########################################################################################################################
##########################################################################################################################
=head1 NAME
package CDS_exon_obj
=cut
=head1 DESCRIPTION
The CDS_exon_obj represents the protein-coding portion of an mRNA_exon_obj.
=cut
package CDS_exon_obj;
use strict;
use warnings;
use Storable qw (store retrieve freeze thaw dclone);
use Carp;
=over 4
=item new()
B<Description:> Cosntructor for the CDS_exon_obj
B<Parameters:> <(end5, end3)>
The (end5, end3) parameter is optional. Alternatively, the set_coords() method can be used to set these values.
B<Returns:> $cds_exon_obj
=back
=cut
;
sub new {
shift;
my $self = { end5 => 0, #stores end5 of cds exon
end3 => 0, #stores end3 of cds exon
phase => undef, #must set if to output in gff3 format.
feat_name => 0, #tigr's temp id
strand => undef, # +|-
};
# end5 and end3 are allowed constructor parameters
if (@_) {
my ($end5, $end3) = @_;
if (defined ($end5) && defined ($end3)) {
$self->{end5} = $end5;
$self->{end3} = $end3;
}
}
bless ($self);
return ($self);
}
=over 4
=item set_feat_name()
B<Description:> Sets the feat_name attribute value of the CDS_exon_obj
B<Parameters:> $feat_name
B<Returns:> none
=back
=cut
sub set_feat_name {
my $self = shift;
my $feat_name = shift;
$self->{feat_name} = $feat_name;
}
=over 4
=item get_CDS_end5_end3()
B<Description:> Retrieves the end5, end3 coordinates of the CDS_exon_obj
** Method deprecated **, use get_coords()
B<Parameters:> none
B<Returns:> (end5, end3)
=back
=cut
sub get_CDS_end5_end3 {
my $self = shift;
return ($self->{end5}, $self->{end3});
}
=over 4
=item set_coords()
B<Description:> Sets the (end5, end3) values of the CDS_exon_obj
B<Parameters:> (end5, end3)
B<Returns:> none
=back
=cut
sub set_coords {
my $self = shift;
my $end5 = shift;
my $end3 = shift;
$self->{end5} = $end5;
$self->{end3} = $end3;
}
=over 4
=item get_coords()
B<Description:> Retrieves the (end5, end3) coordinates of the CDS_exon_obj
B<Parameters:> none
B<Returns:> (end5, end3)
The get_coords() method behaves similarly among Gene_obj, mRNA_exon_obj, and CDS_exon_obj, and is generally preferred to other existing methods for extracting these coordinate values. Other methods persist for backwards compatibility with older applications, but have been largely deprecated.
=back
=cut
sub get_coords {
my $self = shift;
return ($self->get_CDS_end5_end3());
}
=over 4
=item get_orientation()
B<Description:> Retrieves the orientation of the CDS_exon_obj based on gene models orientation.
B<Parameters:> none
B<Returns:> +|-|undef
undef returned if end5 == end3
=back
=cut
;
sub get_orientation {
# determine positive or reverse orientation
my $self = shift;
return ($self->{strand});
}
sub get_strand { ## preferred
my $self = shift;
return($self->get_orientation());
}
=over 4
=item toString()
B<Description:> Retrieves a textual description of the CDS_exon_obj
B<Parameters:> none
B<Returns:> $text
=back
=cut
=over 4
=item clone_cds()
B<Description:> Creates a deep clone of this CDS_exon_obj, using dclone() of Storable.pm
B<Parameters:> none
B<Returns:> $mRNA_exon_obj
=back
=cut
sub clone_cds {
my $self = shift;
my $clone_cds = dclone($self);
return ($clone_cds);
}
=over 4
=item length()
B<Description:> length of this cds segment
B<Parameters:> none
B<Returns:> int
=back
=cut
sub length {
my $self = shift;
my $length = abs ($self->{end3} - $self->{end5}) + 1;
return ($length);
}
=over 4
=item set_phase()
B<Description:> set phase of the CDS incident bp
B<Parameters:> [012]
B<Returns:> self
phase 0 = first bp of codon
phase 1 = second bp of codon
phase 2 = third bp of codon
=back
=cut
sub set_phase {
my $self = shift;
my $phase = shift;
$self->{phase} = $phase;
return($self);
}
=over 4
=item get_phase()
B<Description:> gets phase of the CDS incident bp
B<Parameters:> none
B<Returns:> [012] or undef if not set
phase 0 = first bp of codon
phase 1 = second bp of codon
phase 2 = third bp of codon
=back
=cut
sub get_phase {
my $self = shift;
my $phase = $self->{phase};
return($phase);
}
####
sub merge_CDS {
my $self = shift;
my $other_cds = shift;
my $orientation = $self->get_orientation();
unless ($orientation) {
confess "Error, self CDS lacks orientation\n";
}
my @coords = sort {$a<=>$b} ($self->get_coords(), $other_cds->get_coords());
my $lend = shift @coords;
my $rend = pop @coords;
unless ($lend && $rend) {
confess "Error, trying to merge CDSs but coordinates are not available: \n"
. "self: " . $self->toString()
. "\n"
. "other: " . $other_cds->toString() . "\n";
}
my ($end5, $end3) = ($orientation eq '+') ? ($lend, $rend) : ($rend, $lend);
$self->set_coords($end5, $end3);
}
sub toString {
my $self = shift;
my @coords = $self->get_CDS_end5_end3();
my $feat_name = $self->{feat_name};
my $text = "";
if ($feat_name) {
$text .= "feat_name: $feat_name\t";
}
$text .= "end5 " . $coords[0] . "\tend3 " . $coords[1] . "\n";
return ($text);
}
1;
|