File: bound.c

package info (click to toggle)
transfig 1%3A3.2.3.d-rel-2
  • links: PTS
  • area: main
  • in suites: woody
  • size: 1,356 kB
  • ctags: 1,637
  • sloc: ansic: 19,456; makefile: 68; sh: 38; csh: 25
file content (961 lines) | stat: -rw-r--r-- 28,149 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
/*
 * TransFig: Facility for Translating Fig code
 * Copyright (c) 1985 Supoj Sutantavibul
 * Copyright (c) 1991 Micah Beck
 * Parts Copyright (c) 1989-1999 by Brian V. Smith
 *
 * THE AUTHORS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
 * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
 * EVENT SHALL THE AUTHORS BE LIABLE FOR ANY SPECIAL, INDIRECT OR
 * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
 * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
 * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
 * PERFORMANCE OF THIS SOFTWARE.
 *
 * The X Consortium, and any party obtaining a copy of these files from
 * the X Consortium, directly or indirectly, is granted, free of charge, a
 * full and unrestricted irrevocable, world-wide, paid up, royalty-free,
 * nonexclusive right and license to deal in this software and
 * documentation files (the "Software"), including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons who receive
 * copies from any such party to do so, with the only requirement being
 * that this copyright notice remain intact.  This license includes without
 * limitation a license to do the foregoing actions under any patents of
 * the party supplying this software to the X Consortium.
 */

#include "fig2dev.h"
#include "figure.h"
#include "object.h"

#define		Ninety_deg		M_PI_2
#define		One_eighty_deg		M_PI
#define		Two_seventy_deg		(M_PI + M_PI_2)
#define		Three_sixty_deg		(M_PI + M_PI)
#define		half(z1 ,z2)		((z1+z2)/2.0)
#define		max(a, b)		(((a) > (b)) ? (a) : (b))
#define		min(a, b)		(((a) < (b)) ? (a) : (b))

static double	compute_angle();

/************** ARRAY FOR ARROW SHAPES **************/ 

struct _fpnt { 
		double x,y;
	};

struct _arrow_shape {
		int numpts;
		int tipno;
		double tipmv;
		struct _fpnt points[6];
	};

#define NUM_ARROW_TYPES 21
static struct _arrow_shape arrow_shapes[NUM_ARROW_TYPES+1] = {
		   /* number of points, index of tip, {datapairs} */
		   /* first point must be upper-left point of tail, then tip */

		   /* type 0 */
		   { 3, 1, 2.15, {{-1,0.5}, {0,0}, {-1,-0.5}}},
		   /* place holder for what would be type 0 filled */
		   { 0 },
		   /* type 1 simple triangle */
		   { 4, 1, 2.1, {{-1.0,0.5}, {0,0}, {-1.0,-0.5}, {-1.0,0.5}}},
		   /* type 1 filled simple triangle*/
		   { 4, 1, 2.1, {{-1.0,0.5}, {0,0}, {-1.0,-0.5}, {-1.0,0.5}}},
		   /* type 2 concave spearhead */
		   { 5, 1, 2.6, {{-1.25,0.5},{0,0},{-1.25,-0.5},{-1.0,0},{-1.25,0.5}}},
		   /* type 2 filled concave spearhead */
		   { 5, 1, 2.6, {{-1.25,0.5},{0,0},{-1.25,-0.5},{-1.0,0},{-1.25,0.5}}},
		   /* type 3 convex spearhead */
		   { 5, 1, 1.5, {{-0.75,0.5},{0,0},{-0.75,-0.5},{-1.0,0},{-0.75,0.5}}},
		   /* type 3 filled convex spearhead */
		   { 5, 1, 1.5, {{-0.75,0.5},{0,0},{-0.75,-0.5},{-1.0,0},{-0.75,0.5}}},
		   /* type 4 diamond */
		   { 5, 1, 1.15, {{-0.5,0.5},{0,0},{-0.5,-0.5},{-1.0,0},{-0.5,0.5}}},
		   /* type 4 filled diamond */
		   { 5, 1, 1.15, {{-0.5,0.5},{0,0},{-0.5,-0.5},{-1.0,0},{-0.5,0.5}}},
		   /* type 5 circle - handled in code */
		   { 0, 0, 0.0 }, { 0, 0, 0.0 },
		   /* type 6 half circle - handled in code */
		   { 0, 0, -1.0 }, { 0, 0, -1.0 },
		   /* type 7 square */
		   { 5, 1, 0.0, {{-1.0,0.5},{0,0.5},{0,-0.5},{-1.0,-0.5},{-1.0,0.5}}},
		   /* type 7 filled square */
		   { 5, 1, 0.0, {{-1.0,0.5},{0,0.5},{0,-0.5},{-1.0,-0.5},{-1.0,0.5}}},
		   /* type 8 reverse triangle */
		   { 4, 1, 0.0, {{-1.0,0},{0,0.5},{0,-0.5},{-1.0,0}}},
		   /* type 8 filled reverse triangle */
		   { 4, 1, 0.0, {{-1.0,0},{0,0.5},{0,-0.5},{-1.0,0}}},
		   /* type 9a "wye" */
		   { 3, 0, -1.0, {{0,0.5},{-1.0,0},{0,-0.5}}},
		   /* type 9b bar */
		   { 2, 1, 0.0, {{0,0.5},{0,-0.5}}},
		   /* type 10a two-prong fork */
		   { 4, 0, -1.0, {{0,0.5},{-1.0,0.5},{-1.0,-0.5},{0,-0.5}}},
		   /* type 10b backward two-prong fork */
		   { 4, 1, 0.0, {{-1.0,0.5,},{0,0.5},{0,-0.5},{-1.0,-0.5}}},
		};

arc_bound(arc, xmin, ymin, xmax, ymax)
F_arc	*arc;
int	*xmin, *ymin, *xmax, *ymax;
{
	double	alpha, beta;
	double	dx, dy, radius;
	int	bx, by, sx, sy;

	dx = arc->point[0].x - arc->center.x;
	dy = arc->center.y - arc->point[0].y;
	alpha = atan2(dy, dx);
	if (alpha < 0.0) alpha += Three_sixty_deg;
	/* compute_angle returns value between 0 to 2PI */
	
	radius = sqrt(dx*dx + dy*dy);

	dx = arc->point[2].x - arc->center.x;
	dy = arc->center.y - arc->point[2].y;
	beta = atan2(dy, dx);
	if (beta < 0.0) beta += Three_sixty_deg;

	bx = max(arc->point[0].x, arc->point[1].x);
	bx = max(arc->point[2].x, bx);
	by = max(arc->point[0].y, arc->point[1].y);
	by = max(arc->point[2].y, by);
	sx = min(arc->point[0].x, arc->point[1].x);
	sx = min(arc->point[2].x, sx);
	sy = min(arc->point[0].y, arc->point[1].y);
	sy = min(arc->point[2].y, sy);

	if (arc->direction == 1) { /* counter clockwise */
	    if (alpha > beta) {
		if (alpha <= 0 || 0 <= beta)
		    bx = (int)(arc->center.x + radius + 1.0);
		if (alpha <= Ninety_deg || Ninety_deg <= beta)
		    sy = (int)(arc->center.y - radius - 1.0);
		if (alpha <= One_eighty_deg || One_eighty_deg <= beta)
		    sx = (int)(arc->center.x - radius - 1.0);
		if (alpha <= Two_seventy_deg || Two_seventy_deg <= beta)
		    by = (int)(arc->center.y + radius + 1.0);
		}
	    else {
		if (0 <= beta && alpha <= 0)
		    bx = (int)(arc->center.x + radius + 1.0);
		if (Ninety_deg <= beta && alpha <= Ninety_deg)
		    sy = (int)(arc->center.y - radius - 1.0);
		if (One_eighty_deg <= beta && alpha <= One_eighty_deg)
		    sx = (int)(arc->center.x - radius - 1.0);
		if (Two_seventy_deg <= beta && alpha <= Two_seventy_deg)
		    by = (int)(arc->center.y + radius + 1.0);
		}
	    }
	else {	/* clockwise	*/
	    if (alpha > beta) {
		if (beta <= 0 && 0 <= alpha)
		    bx = (int)(arc->center.x + radius + 1.0);
		if (beta <= Ninety_deg && Ninety_deg <= alpha)
		    sy = (int)(arc->center.y - radius - 1.0);
		if (beta <= One_eighty_deg && One_eighty_deg <= alpha)
		    sx = (int)(arc->center.x - radius - 1.0);
		if (beta <= Two_seventy_deg && Two_seventy_deg <= alpha)
		    by = (int)(arc->center.y + radius + 1.0);
		}
	    else {
		if (0 <= alpha || beta <= 0)
		    bx = (int)(arc->center.x + radius + 1.0);
		if (Ninety_deg <= alpha || beta <= Ninety_deg)
		    sy = (int)(arc->center.y - radius - 1.0);
		if (One_eighty_deg <= alpha || beta <= One_eighty_deg)
		    sx = (int)(arc->center.x - radius - 1.0);
		if (Two_seventy_deg <= alpha || beta <= Two_seventy_deg)
		    by = (int)(arc->center.y + radius + 1.0);
		}
	    }
	/* if pie-wedge type, account for the center point */
	if(arc->type == T_PIE_WEDGE_ARC) {
	    sx = min((int)arc->center.x, sx);
	    bx = max((int)arc->center.x, bx);
	    sy = min((int)arc->center.y, sy);
	    by = max((int)arc->center.y, by);
	}

	*xmin = sx;
	*ymin = sy;
	*xmax = bx;
	*ymax = by;

	/* now add in the arrow (if any) boundaries */
	arrow_bound(O_ARC, (F_line *)arc, xmin, ymin, xmax, ymax);
	}

compound_bound(compound, xmin, ymin, xmax, ymax, include)
    F_compound	*compound;
    int		*xmin, *ymin, *xmax, *ymax;
    int		 include;
{
    F_arc	*a;
    F_ellipse	*e;
    F_compound	*c;
    F_spline	*s;
    F_line	*l;
    F_text	*t;
    int		 bx, by, sx, sy, first = 1;
    int		 llx, lly, urx, ury;
    int	         half_wd;

    llx = lly =  1000000;
    urx = ury = -1000000;
    while(compound != NULL) {
	for (a = compound->arcs; a != NULL; a = a->next) {
	    arc_bound(a, &sx, &sy, &bx, &by);
            half_wd = (a->thickness + 1) / 2;
	    if (first) {
		first = 0;
		llx = sx - half_wd; lly = sy - half_wd;
		urx = bx + half_wd; ury = by + half_wd;
		}
	    else {
		llx = min(llx, sx - half_wd); lly = min(lly, sy - half_wd);
		urx = max(urx, bx + half_wd); ury = max(ury, by + half_wd);
		}
	    }

	if (compound->compounds) {
	    compound_bound(compound->compounds, &sx, &sy, &bx, &by, include);
	    if (first) {
		first = 0;
		llx = sx; lly = sy;
		urx = bx; ury = by;
		}
	    else {
		llx = min(llx, sx); lly = min(lly, sy);
		urx = max(urx, bx); ury = max(ury, by);
		}
	    }

	for (e = compound->ellipses; e != NULL; e = e->next) {
	    ellipse_bound(e, &sx, &sy, &bx, &by);
	    if (first) {
		first = 0;
		llx = sx; lly = sy;
		urx = bx; ury = by;
		}
	    else {
		llx = min(llx, sx); lly = min(lly, sy);
		urx = max(urx, bx); ury = max(ury, by);
		}
	    }

	for (l = compound->lines; l != NULL; l = l->next) {
	    line_bound(l, &sx, &sy, &bx, &by);
	    /* pictures have no line thickness */
	    if (l->type == T_PIC_BOX)
		half_wd = 0;
	    else
		half_wd = ceil((double)(l->thickness+1) / sqrt(2.0)); 
            /* leave space for corners, better approach needs much more math! */
	    if (first) {
		first = 0;
		llx = sx - half_wd; lly = sy - half_wd;
		urx = bx + half_wd; ury = by + half_wd;
		}
	    else {
		llx = min(llx, sx - half_wd); lly = min(lly, sy - half_wd);
		urx = max(urx, bx + half_wd); ury = max(ury, by + half_wd);
		}
	    }

	for (s = compound->splines; s != NULL; s = s->next) {
	    spline_bound(s, &sx, &sy, &bx, &by);
            half_wd = (s->thickness+1) / 2;
	    if (first) {
		first = 0;
		llx = sx - half_wd; lly = sy - half_wd;
		urx = bx + half_wd; ury = by + half_wd;
		}
	    else {
		llx = min(llx, sx - half_wd); lly = min(lly, sy - half_wd);
		urx = max(urx, bx + half_wd); ury = max(ury, by + half_wd);
		}
	    }

	for (t = compound->texts; t != NULL; t = t->next) {
	    text_bound(t, &sx, &sy, &bx, &by, include);
	    if (first) {
		first = 0;
		llx = sx; lly = sy;
		urx = bx; ury = by;
		}
	    else {
		llx = min(llx, sx); lly = min(lly, sy);
		urx = max(urx, bx); ury = max(ury, by);
		}
	    }
        compound = compound->next;
    }

    *xmin = llx; *ymin = lly;
    *xmax = urx; *ymax = ury;
}

ellipse_bound(e, xmin, ymin, xmax, ymax)
F_ellipse	*e;
int		*xmin, *ymin, *xmax, *ymax;
{ 
	/* stolen from xfig-2.1.8 max2 from xfig == max here*/

	int	    half_wd;
	double	    c1, c2, c3, c4, c5, c6, v1, cphi, sphi, cphisqr, sphisqr;
	double	    xleft, xright, d, asqr, bsqr;
	int	    yymax, yy=0;
	float	    xcen, ycen, a, b; 

	xcen = e->center.x;
	ycen = e->center.y;
	a = e->radiuses.x;
	b = e->radiuses.y;
	if (a==0 || b==0) {
		*xmin = *xmax = xcen;
		*ymin = *ymax = ycen;
		return;
	}

	cphi = cos((double)e->angle);
	sphi = sin((double)e->angle);
	cphisqr = cphi*cphi;
	sphisqr = sphi*sphi;
	asqr = a*a;
	bsqr = b*b;
	
	c1 = (cphisqr/asqr)+(sphisqr/bsqr);
	c2 = ((cphi*sphi/asqr)-(cphi*sphi/bsqr))/c1;
	c3 = (bsqr*cphisqr) + (asqr*sphisqr);
	yymax = sqrt(c3);
	c4 = a*b/c3;
	c5 = 0;
	v1 = c4*c4;
	c6 = 2*v1;
	c3 = c3*v1-v1;
	/* odd first points */
	*xmin = *ymin =  100000;
	*xmax = *ymax = -100000;
	if (yymax % 2) {
		d = sqrt(c3);
		*xmin = min(*xmin,xcen-ceil(d));
		*xmax = max(*xmax,xcen+ceil(d));
		*ymin = min(*ymin,ycen);
		*ymax = max(*ymax,ycen);
		c5 = c2;
		yy=1;
	}
	while (c3>=0) {
		d = sqrt(c3);
		xleft = c5-d;
		xright = c5+d;                        
		*xmin = min(*xmin,xcen+floor(xleft));
		*xmax = max(*xmax,xcen+ceil(xleft));
		*ymax = max(*ymax,ycen+yy);
		*xmin = min(*xmin,xcen+floor(xright));
		*xmax = max(*xmax,xcen+ceil(xright));
		*ymax = max(*ymax,ycen+yy);
		*xmin = min(*xmin,xcen-ceil(xright));
		*xmax = max(*xmax,xcen-floor(xright));
		*ymin = min(*ymin,ycen-yy);
		*xmin = min(*xmin,xcen-ceil(xleft));
		*xmax = max(*xmax,xcen-floor(xleft));
		*ymin = min(*ymin,ycen-yy);
		c5+=c2;
		v1+=c6;
		c3-=v1;
		yy=yy+1;
	}
	/* for simplicity, just add half the line thickness to xmax and ymax
	   and subtract half from xmin and ymin */
	half_wd = (e->thickness+1)/2; /*correct for integer division */
	*xmax += half_wd;
	*ymax += half_wd;
	*xmin -= half_wd;
	*ymin -= half_wd;
	}

line_bound(l, xmin, ymin, xmax, ymax)
F_line	*l;
int	*xmin, *ymin, *xmax, *ymax;
{
	points_bound(l->points, xmin, ymin, xmax, ymax);
	/* now add in the arrow (if any) boundaries but
	   only if the line has two or more points */
	if (l->points->next)
	    arrow_bound(O_POLYLINE, l, xmin, ymin, xmax, ymax);
}

spline_bound(s, xmin, ymin, xmax, ymax)
F_spline	*s;
int		*xmin, *ymin, *xmax, *ymax;
{
	if (int_spline(s)) {
	    int_spline_bound(s, xmin, ymin, xmax, ymax);
	    }
	else {
	    normal_spline_bound(s, xmin, ymin, xmax, ymax);
	    }
	/* now do any arrows */
	arrow_bound(O_SPLINE, s, xmin, ymin, xmax, ymax);
}

int_spline_bound(s, xmin, ymin, xmax, ymax)
F_spline	*s;
int		*xmin, *ymin, *xmax, *ymax;
{
	F_point		*p1, *p2;
	F_control	*cp1, *cp2;
	double		x0, y0, x1, y1, x2, y2, x3, y3, sx1, sy1, sx2, sy2;
	double		tx, ty, tx1, ty1, tx2, ty2;
	double		sx, sy, bx, by;

	p1 = s->points;
	sx = bx = p1->x;
	sy = by = p1->y;
	cp1 = s->controls;
	for (p2 = p1->next, cp2 = cp1->next; p2 != NULL;
		p1 = p2, cp1 = cp2, p2 = p2->next, cp2 = cp2->next) {
	    x0 = p1->x; y0 = p1->y;
	    x1 = cp1->rx; y1 = cp1->ry;
	    x2 = cp2->lx; y2 = cp2->ly;
	    x3 = p2->x; y3 = p2->y;
	    tx = half(x1, x2); ty = half(y1, y2);
	    sx1 = half(x0, x1); sy1 = half(y0, y1);
	    sx2 = half(sx1, tx); sy2 = half(sy1, ty);
	    tx2 = half(x2, x3); ty2 = half(y2, y3);
	    tx1 = half(tx2, tx); ty1 = half(ty2, ty);

	    sx = min(x0, sx); sy = min(y0, sy);
	    sx = min(sx1, sx); sy = min(sy1, sy);
	    sx = min(sx2, sx); sy = min(sy2, sy);
	    sx = min(tx1, sx); sy = min(ty1, sy);
	    sx = min(tx2, sx); sy = min(ty2, sy);
	    sx = min(x3, sx); sy = min(y3, sy);

	    bx = max(x0, bx); by = max(y0, by);
	    bx = max(sx1, bx); by = max(sy1, by);
	    bx = max(sx2, bx); by = max(sy2, by);
	    bx = max(tx1, bx); by = max(ty1, by);
	    bx = max(tx2, bx); by = max(ty2, by);
	    bx = max(x3, bx); by = max(y3, by);
	    }
	*xmin = round(sx);
	*ymin = round(sy);
	*xmax = round(bx);
	*ymax = round(by);
}

normal_spline_bound(s, xmin, ymin, xmax, ymax)
F_spline	*s;
int		*xmin, *ymin, *xmax, *ymax;
{
	F_point	*p;
	double	cx1, cy1, cx2, cy2, cx3, cy3, cx4, cy4;
	double	x1, y1, x2, y2, sx, sy, bx, by;
	double	px, py, qx, qy;

	p = s->points;
	x1 = p->x;  y1 = p->y;
	p = p->next;
	x2 = p->x;  y2 = p->y;
	cx1 = (x1 + x2) / 2.0;   cy1 = (y1 + y2) / 2.0;
	cx2 = (cx1 + x2) / 2.0;  cy2 = (cy1 + y2) / 2.0;
	if (closed_spline(s)) {
	    x1 = (cx1 + x1) / 2.0;
	    y1 = (cy1 + y1) / 2.0;
	    }
	sx = min(x1, cx2); sy = min(y1, cy2);
	bx = max(x1, cx2); by = max(y1, cy2);

	for (p = p->next; p != NULL; p = p->next) {
	    x1 = x2;  y1 = y2;
	    x2 = p->x;  y2 = p->y;
	    cx4 = (x1 + x2) / 2.0; cy4 = (y1 + y2) / 2.0;
	    cx3 = (x1 + cx4) / 2.0; cy3 = (y1 + cy4) / 2.0;
	    cx2 = (cx4 + x2) / 2.0;  cy2 = (cy4 + y2) / 2.0;

	    px = min(cx2, cx3); py = min(cy2, cy3);
	    qx = max(cx2, cx3); qy = max(cy2, cy3);

	    sx = min(sx, px); sy = min(sy, py);
	    bx = max(bx, qx); by = max(by, qy);
	    }
	if (closed_spline(s)) {
	    *xmin = floor(sx );
	    *ymin = floor(sy );
	    *xmax = ceil (bx );
	    *ymax = ceil (by );
	    }
	else {
	    *xmin = floor(min(sx, x2) );
	    *ymin = floor(min(sy, y2) );
	    *xmax = ceil (max(bx, x2) );
	    *ymax = ceil (max(by, y2) );
	    }
}

double rot_x(x,y,angle) 
    double	x,y,angle;
{
    return(x*cos(-angle)-y*sin(-angle));
}

double rot_y(x,y,angle)
    double	x,y,angle;
{
    return(x*sin(-angle)+y*cos(-angle));
}


text_bound(t, xmin, ymin, xmax, ymax, inc_text)
    F_text	*t;
    int		*xmin, *ymin, *xmax, *ymax;
    int		 inc_text;
{
    double	 dx1, dx2, dx3, dx4, dy1, dy2, dy3, dy4;
    int		 descend;

    Boolean include = (inc_text && ((t->flags & SPECIAL_TEXT)==0));
    descend = (strchr(t->cstring,'g') || strchr(t->cstring,'j') ||
		  strchr(t->cstring,'p') || strchr(t->cstring,'q') ||
		  strchr(t->cstring,'y') || strchr(t->cstring,'$') ||
		  strchr(t->cstring,'(') || strchr(t->cstring,')') ||
		  strchr(t->cstring,'{') || strchr(t->cstring,'}') ||
		  strchr(t->cstring,',') || strchr(t->cstring,';'));
    /* characters have some extent downside */
    if (t->type == T_CENTER_JUSTIFIED) {
	dx1 = (include?  (t->length/1.95) : 0.0);	dy1 =  0.0;
	dx2 = (include? -(t->length/1.95) : 0.0);	dy2 =  0.0;
	dx3 = (include?  (t->length/1.95) : 0.0);	dy3 = -t->height;
	dx4 = (include? -(t->length/1.95) : 0.0);	dy4 = -t->height;
    } else if (t->type == T_RIGHT_JUSTIFIED) {
	dx1 = 0.0;					dy1 =  0.0;
	dx2 = (include? -t->length*1.0256 : 0.0);	dy2 =  0.0;
	dx3 = 0.0;					dy3 = -t->height;
	dx4 = (include? -t->length*1.0256 : 0.0);	dy4 = -t->height;
    } else {
	dx1 = (include ? t->length*1.0256 : 0.0);	dy1 =  0.0;
	dx2 = 0.0;					dy2 =  0.0;
	dx3 = (include ? t->length*1.0256 : 0.0);	dy3 = -t->height;
	dx4 = 0.0;					dy4 = -t->height;
    }
    if (descend) {
	dy1 = 0.3*t->height;
	dy2 = 0.3*t->height;
	dy3 = -0.8*t->height;
	dy4 = -0.8*t->height;
    }
	
    *xmax= t->base_x +
           max( max( rot_x(dx1,dy1,t->angle), rot_x(dx2,dy2,t->angle) ), 
	        max( rot_x(dx3,dy3,t->angle), rot_x(dx4,dy4,t->angle) ) );
    *ymax= t->base_y + 
           max( max( rot_y(dx1,dy1,t->angle), rot_y(dx2,dy2,t->angle) ), 
	        max( rot_y(dx3,dy3,t->angle), rot_y(dx4,dy4,t->angle) ) );

    *xmin= t->base_x + 
           min( min( rot_x(dx1,dy1,t->angle), rot_x(dx2,dy2,t->angle) ), 
	        min( rot_x(dx3,dy3,t->angle), rot_x(dx4,dy4,t->angle) ) );
    *ymin= t->base_y + 
           min( min( rot_y(dx1,dy1,t->angle), rot_y(dx2,dy2,t->angle) ), 
	        min( rot_y(dx3,dy3,t->angle), rot_y(dx4,dy4,t->angle) ) );
}

points_bound(points, xmin, ymin, xmax, ymax)
    F_point	*points;
    int		*xmin, *ymin, *xmax, *ymax;
{
	int	bx, by, sx, sy;
	F_point	*p;

	bx = sx = points->x; by = sy = points->y;
	for (p = points->next; p != NULL; p = p->next) {
	    sx = min(sx, p->x); sy = min(sy, p->y);
	    bx = max(bx, p->x); by = max(by, p->y);
	    }
	*xmin = sx; *ymin = sy;
	*xmax = bx; *ymax = by;
}

control_points_bound(cps, xmin, ymin, xmax, ymax)
    F_control	*cps;
    int		*xmin, *ymin, *xmax, *ymax;
{
	F_control	*c;
	double		bx, by, sx, sy;

	bx = sx = cps->lx;
	by = sy = cps->ly;
	sx = min(sx, cps->rx); sy = min(sy, cps->ry);
	bx = max(bx, cps->rx); by = max(by, cps->ry);
	for (c = cps->next; c != NULL; c = c->next) {
	    sx = min(sx, c->lx); sy = min(sy, c->ly);
	    bx = max(bx, c->lx); by = max(by, c->ly);
	    sx = min(sx, c->rx); sy = min(sy, c->ry);
	    bx = max(bx, c->rx); by = max(by, c->ry);
	    }
	*xmin = round(sx); *ymin = round(sy);
	*xmax = round(bx); *ymax = round(by);
}

/* extend xmin, ymin xmax, ymax by the arrow boundaries of obj (if any) */

arrow_bound(objtype, obj, xmin, ymin, xmax, ymax)
    int		    objtype;
    F_line	   *obj;
    int		   *xmin, *ymin, *xmax, *ymax;
{
    int		    fxmin, fymin, fxmax, fymax;
    int		    bxmin, bymin, bxmax, bymax;
    F_point	   *p, *q;
    F_arc	   *a;
    int		    p1x, p1y, p2x, p2y;
    int		    dum;
    int		    npts, i;
    Point	    arrowpts[50];

    if (obj->for_arrow) {
	if (objtype == O_ARC) {
	    a = (F_arc *) obj;
	    compute_arcarrow_angle(a->center.x, a->center.y,
			(double)a->point[2].x, (double)a->point[2].y,
			a->direction, a->for_arrow, &p1x, &p1y);
	    p2x = a->point[2].x;	/* forward tip */
	    p2y = a->point[2].y;
	} else {
	    /* this doesn't work very well for a spline with few points 
		and lots of curvature */
	    /* locate last point (forward tip) and next-to-last point */
	    for (p = obj->points; p->next; p = p->next)
		q = p;
	    p1x = q->x;
	    p1y = q->y;
	    p2x = p->x;
	    p2y = p->y;
	}
	calc_arrow(p1x, p1y, p2x, p2y, &dum, &dum, &dum, &dum,
			obj->for_arrow, arrowpts, &npts, &dum);
	fxmin=fymin=100000;
	fxmax=fymax=-100000;
	for (i=0; i<npts; i++) {
	    fxmin = min2(fxmin, arrowpts[i].x);
	    fymin = min2(fymin, arrowpts[i].y);
	    fxmax = max2(fxmax, arrowpts[i].x);
	    fymax = max2(fymax, arrowpts[i].y);
	}
	*xmin = min2(*xmin, fxmin);
	*xmax = max2(*xmax, fxmax);
	*ymin = min2(*ymin, fymin);
	*ymax = max2(*ymax, fymax);
    }
    if (obj->back_arrow) {
	if (objtype == O_ARC) {
	    a = (F_arc *) obj;
	    compute_arcarrow_angle(a->center.x, a->center.y,
			(double) a->point[0].x, (double) a->point[0].y,
			a->direction ^ 1, a->back_arrow, &p1x, &p1y);
	    p2x = a->point[0].x;	/* backward tip */
	    p2y = a->point[0].y;
	} else {
	    p1x = obj->points->next->x;	/* second point */
	    p1y = obj->points->next->y;
	    p2x = obj->points->x;	/* first point (forward tip) */
	    p2y = obj->points->y;
	}
	calc_arrow(p1x, p1y, p2x, p2y, &dum, &dum, &dum, &dum,
			obj->back_arrow, arrowpts, &npts, &dum);
	bxmin=bymin=100000;
	bxmax=bymax=-100000;
	for (i=0; i<npts; i++) {
	    bxmin = min2(bxmin, arrowpts[i].x);
	    bymin = min2(bymin, arrowpts[i].y);
	    bxmax = max2(bxmax, arrowpts[i].x);
	    bymax = max2(bymax, arrowpts[i].y);
	}
	*xmin = min2(*xmin, bxmin);
	*xmax = max2(*xmax, bxmax);
	*ymin = min2(*ymin, bymin);
	*ymax = max2(*ymax, bymax);
    }
}

/****************************************************************

 calc_arrow - calculate points heading from (x1, y1) to (x2, y2)

 Must pass POINTER to npoints for return value and for c1x, c1y,
 c2x, c2y, which are two points at the end of the arrowhead so:

		|\     + (c1x,c1y)
		|  \
		|    \
 ---------------|      \
		|      /
		|    /
		|  /
		|/     + (c2x,c2y)


 Fills points array with npoints arrowhead coordinates

****************************************************************/

calc_arrow(x1, y1, x2, y2, c1x, c1y, c2x, c2y, arrow, points, npoints, nboundpts)
    int		    x1, y1, x2, y2;
    int		   *c1x, *c1y, *c2x, *c2y;
    F_arrow	   *arrow;
    Point	    points[];
    int		   *npoints, *nboundpts;
{
    double	    x, y, xb, yb, dx, dy, l, sina, cosa;
    double	    mx, my;
    double	    ddx, ddy, lpt, tipmv;
    double	    alpha;
    double	    miny, maxy;
    double	    thick;
    int		    xa, ya, xs, ys;
    double	    xt, yt;
    float	    wd = arrow->wid;
    float	    ht = arrow->ht;
    int		    type, style, indx;
    int		    i, np;

    /* types = 0...10 */
    type = arrow->type;
    /* style = 0 (unfilled) or 1 (filled) */
    style = arrow->style;
    /* index into shape array */
    indx = 2*type + style;

    *npoints = 0;
    *nboundpts = 0;
    dx = x2 - x1;
    dy = y1 - y2;
    if (dx==0 && dy==0)
	return;

    /* lpt is the amount the arrowhead extends beyond the end of the
       line because of the sharp point (miter join) */

    tipmv = arrow_shapes[indx].tipmv;
    lpt = 0.0;
    /* lines are made a little thinner in set_linewidth */
    thick = (arrow->thickness <= THICK_SCALE) ? 	
		0.5* arrow->thickness :
		arrow->thickness - THICK_SCALE;
    if (tipmv > 0.0)
        lpt = thick / (2.0 * sin(atan(wd / (tipmv * ht))));
    else if (tipmv == 0.0)
	lpt = thick / 3.0;	 /* types which have blunt end */
    /* (Don't adjust those with tipmv < 0) */

    /* alpha is the angle the line is relative to horizontal */
    alpha = atan2(dy,-dx);

    /* ddx, ddy is amount to move end of line back so that arrowhead point
       ends where line used to */
    ddx = lpt * cos(alpha);
    ddy = lpt * sin(alpha);

    /* move endpoint of line back */
    mx = x2 + ddx;
    my = y2 + ddy;

    l = sqrt(dx * dx + dy * dy);
    sina = dy / l;
    cosa = dx / l;
    xb = mx * cosa - my * sina;
    yb = mx * sina + my * cosa;

    /* (xa,ya) is the rotated endpoint */
    xa =  xb * cosa + yb * sina + 0.5;
    ya = -xb * sina + yb * cosa + 0.5;

    /*
     * We approximate circles with an octagon since, at small sizes,
     * this is sufficient.  I haven't bothered to alter the bounding
     * box calculations.
     */
    miny =  100000.0;
    maxy = -100000.0;
    if (type == 5 || type == 6) {	/* also include half circle */
	double rmag;
	double angle, init_angle, rads;
	double fix_x, fix_y;

	/* get angle of line */
	init_angle = compute_angle(dx,dy);

	/* (xs,ys) is a point the length (height) of the arrowhead BACK from 
	   the end of the shaft */
	/* for the half circle, use 0.0 */
	xs =  (xb-(type==5? ht: 0.0)) * cosa + yb * sina + 0.5;
	ys = -(xb-(type==5? ht: 0.0)) * sina + yb * cosa + 0.5;

	/* calc new (dx, dy) from moved endpoint to (xs, ys) */
	dx = mx - xs;
	dy = my - ys;
	/* radius */
	rmag = ht/2.0;
	fix_x = xs + (dx / (double) 2.0);
	fix_y = ys + (dy / (double) 2.0);
	/* choose number of points for circle - 20+mag/4 points */
	np = round(mag/4.0) + 20;
	/* full or half circle? */
	rads = (type==5? M_2PI: M_PI);

	if (type == 5) {
	    init_angle = 5.0*M_PI_2 - init_angle;
	    /* np/2 points in the forward part of the circle for the line clip area */
	    *nboundpts = np/2;
	    /* full circle */
	    rads = M_2PI;
	} else {
	    init_angle = 3.0*M_PI_2 - init_angle;
	    /* no points in the line clip area */
	    *nboundpts = 0;
	    /* half circle */
	    rads = M_PI;
	}
	/* draw the half or full circle */
	for (i = 0; i < np; i++) {
	    if (type == 5)
		angle = init_angle - (rads * (double) i / (double) np);
	    else
		angle = init_angle - (rads * (double) i / (double) (np-1));
	    x = fix_x + round(rmag * cos(angle));
	    points[*npoints].x = x;
	    y = fix_y + round(rmag * sin(angle));
	    points[*npoints].y = y;
	    miny = min2(y, miny);
	    maxy = max2(y, maxy);
	    (*npoints)++;
	}
	x = 2.0*THICK_SCALE;
	y = rmag;
	xt =  x*cosa + y*sina + x2;
	yt = -x*sina + y*cosa + y2;
	*c1x = xt;
	*c1y = yt;
	y = -rmag;
	xt =  x*cosa + y*sina + x2;
	yt = -x*sina + y*cosa + y2;
	*c2x = xt;
	*c2y = yt;
    } else {
	/* 3 points in the arrowhead that define the line clip part */
	*nboundpts = 3;
	np = arrow_shapes[indx].numpts;
	for (i=0; i<np; i++) {
	    x = arrow_shapes[indx].points[i].x * ht;
	    y = arrow_shapes[indx].points[i].y * wd;
	    miny = min2(y, miny);
	    maxy = max2(y, maxy);
	    xt =  x*cosa + y*sina + xa;
	    yt = -x*sina + y*cosa + ya;
	    points[*npoints].x = xt;
	    points[*npoints].y = yt;
	    (*npoints)++;
	}
	x = arrow_shapes[indx].points[arrow_shapes[indx].tipno].x * ht + THICK_SCALE;
	y = maxy;
	xt =  x*cosa + y*sina + x2;
	yt = -x*sina + y*cosa + y2;
	*c1x = xt;
	*c1y = yt;
	y = miny;
	xt =  x*cosa + y*sina + x2;
	yt = -x*sina + y*cosa + y2;
	*c2x = xt;
	*c2y = yt;
    }
}

/********************* COMPUTE ANGLE ************************

Input arguments :
	(dx,dy) : the vector (0,0)(dx,dy)
Output arguments : none
Return value : the angle of the vector in the range [0, 2PI)

*************************************************************/

double
compute_angle(dx, dy)		/* compute the angle between 0 to 2PI  */
    double	    dx, dy;
{
    double	    alpha;

    if (dx == 0) {
	if (dy > 0)
	    alpha = M_PI_2;
	else
	    alpha = 3 * M_PI_2;
    } else if (dy == 0) {
	if (dx > 0)
	    alpha = 0;
	else
	    alpha = M_PI;
    } else {
	alpha = atan(dy / dx);	/* range = -PI/2 to PI/2 */
	if (dx < 0)
	    alpha += M_PI;
	else if (dy < 0)
	    alpha += M_2PI;
    }
    return (alpha);
}

/* Computes a point on a line which is a chord to the arc specified by */
/* center (x1,y1) and endpoint (x2,y2), where the chord intersects the */
/* arc arrow->ht from the endpoint.                                    */
/* May give strange values if the arrow.ht is larger than about 1/4 of */
/* the circumference of a circle on which the arc lies.                */

compute_arcarrow_angle(x1, y1, x2, y2, direction, arrow, x, y)
    double	 x1, y1;
    double	 x2, y2;
    int		 direction;
    F_arrow	*arrow;
    int		*x, *y;
{
    double	 r, alpha, beta, dy, dx;
    double	 lpt,h;
    double	 thick;

    dy=y2-y1;
    dx=x2-x1;
    r=sqrt(dx*dx+dy*dy);
    h = (double) arrow->ht;
    /* lines are made a little thinner in set_linewidth */
    thick = (arrow->thickness <= THICK_SCALE) ? 	
		0.5* arrow->thickness :
		arrow->thickness - THICK_SCALE;
    /* lpt is the amount the arrowhead extends beyond the end of the line */
    lpt = thick/2.0/(arrow->wid/h/2.0);
    /* add this to the length */
    h += lpt;

    /* radius too small for this method, use normal method */
    if (h > 2.0*r) {
	arc_tangent(x1,y1,x2,y2,direction,x,y);
	return;
    }

    beta=atan2(dy,dx);
    if (direction) {
	alpha = 2*asin(h/2.0/r);
    } else {
	alpha = -2*asin(h/2.0/r);
    }

    *x=round(x1+r*cos(beta+alpha));
    *y=round(y1+r*sin(beta+alpha));
}