1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
|
/* This file is part of TransTerm v2.0 BETA and is covered by the GNU GPL
* License version 2.0. See file LICENSE.txt for more details. */
#ifndef SEQ_H
#define SEQ_H
#include <string>
#include <vector>
#include <list>
#include <cstdlib>
#include <cstdio>
#include <cstring>
using namespace std;
typedef double Energy;
enum Direction {REVERSE=-1, BIDIR=0, FORWARD=1};
enum RegionType { GENE, HEAD2TAIL, TAIL2TAIL, HEAD2HEAD };
typedef const char * SeqPtr;
class Seq;
class Confidence;
// Represents a region of a sequence [start,end] (both pointers are inclusive)
struct Region
{
string name; // a description of the region
SeqPtr start, end; // pointers into seq at the start & end of the seq
const Seq * seq; // seq of which this is a region
string desc;
Region(const string & n, const Seq * seqq, SeqPtr s, SeqPtr e,
const string & d = "") :
name(n), start(s), end(e), seq(seqq), desc(d) {}
Region() : name(""), start(0), end(0), seq(0) {}
virtual ~Region() {}
// Direction of the region. Regions always "run" from start to end
// If end < start, the dreiction is "REVERSE"
virtual Direction dir() const
{
return (end < start) ? REVERSE : FORWARD;
}
// the 'left' of the region is always the 5' end of the sequence,
// regardless of the direction of the region. The 'right', likewise, is
// always the 3' end.
SeqPtr left() const { return min(start,end); }
SeqPtr right() const { return max(start,end); }
int length() const { return abs(start-end) + 1; }
};
// represents a terminator region. the 'region' is defined as the hairpin
// sequence --- the tail 'region' is not included.
struct Term : public Region
{
// terminator geometry
int gap;
int stem_len, loop_len;
list<int> gaps;
// terminator scores
Energy hp_energy, tail_energy;
int conf;
// a link to an 'equiv' term
const Term * partner;
list<Term*> opp_overlapping, overlapping;
Term() : Region(), gap(0), stem_len(0), loop_len(0)
{
init0();
lst = rst = 0;
}
Term(const Seq * s, Direction d, SeqPtr base, int sl,
int ll, int g)
: Region("", s, base - d*(geolength(sl, ll, g) - 1), base),
gap(g), stem_len(sl), loop_len(ll), sense(d)
{
init0();
rst = right() - stem_len + 1 - ((gap>0)?1:0);
lst = right_stem_top() - loop_len - 1;
}
Term(const Seq * s, Direction d, SeqPtr lsb1, SeqPtr lst1,
SeqPtr rst1, SeqPtr rsb1, list<int> & glist, Energy hpe = 0)
: Region("", s, min(lsb1, rsb1), max(lsb1, rsb1))
{
init0();
lst = min(lst1, rst1);
rst = max(lst1, rst1);
sense = d;
hp_energy = hpe;
loop_len = rst - lst - 1;
stem_len = right() - rst + 1;
// for backwards compatability, gap = true if there is a gap
gap = (abs(lst - left() + 1) != stem_len) ? 1 : 0;
gaps = glist;
}
virtual ~Term()
{
// if(gaps)
// {
// delete gaps;
// gaps = 0;
// }
}
Direction dir() const { return sense; }
Direction & dir() { return sense; }
// accessors for the energy assigned to this terminator
enum EnergyKind {TAIL, HAIRPIN};
Energy energy(EnergyKind k) const
{
return (k==HAIRPIN)?hp_energy:tail_energy;
}
// Pointers into the geometry of the terminator
SeqPtr left_stem_base() const { return left(); }
SeqPtr right_stem_base() const { return right(); }
SeqPtr left_stem_top() const { return lst; }
SeqPtr right_stem_top() const { return rst; }
private:
// return the size of the hairpin with the given geometry
int
geolength(int stem_len, int loop_len, int gap)
{
return 2*stem_len + loop_len + ((gap!=0)?1:0);
}
// set the things that shd be 0 to 0
void
init0()
{
hp_energy = tail_energy = 0.0;
conf = 0;
partner = 0;
}
Direction sense;
SeqPtr lst, rst;
};
typedef vector<const Term *> ConstTermVec;
// Represents a sequence
struct Seq
{
string name;
string desc;
unsigned long length; // number of characters in the seq
char * dna; // pointer to the sequence data
vector<Term*> terms; // list of Term features
vector<Region*> genes; // list of gene features
Seq() : name(""), desc(""), length(0), dna(0) {}
~Seq() { clear(); }
void clear();
SeqPtr left() const { return dna; }
SeqPtr right() const { return dna + length - 1; }
};
typedef vector<Seq*> Genome;
// represents an event happening in the sequence.
struct Event
{
const Region * reg;
// for paired events, extent is the location of the other event
SeqPtr place, extent;
enum Kind
{
Terminator,
ForwardGeneStart,
ForwardGeneEnd,
ReverseGeneStart,
ReverseGeneEnd
} kind;
Event() : reg(0), place(0), extent(0) {}
Event(const Region * r, SeqPtr p, Kind k, SeqPtr x=0) :
reg(r), place(p), extent(x), kind(k) {}
};
typedef vector<Event>::const_iterator event_iterator;
class EventResponder
{
public:
virtual ~EventResponder() {}
virtual void start(const Seq & seq, Direction dir)
{
_fwd_gene = _rvs_gene = 0;
}
virtual void end() {}
virtual void event(const Event & e) {}
virtual void terminator(const Term * term) {}
// if these are called from the subclass, they'll manage gene_count()
virtual void enter_gene(const Event & e);
virtual void leave_gene(const Event & e);
virtual void
enter_intergene(RegionType r, Direction d, const Event & e)
{
set(r, d, true);
}
virtual void
leave_intergene(RegionType r, Direction d, const Event & e)
{
set(r, d, false);
}
friend int er_confidence(const EventResponder &, const Confidence &, const Term &);
protected:
// you can't create a plain EventResponder --- must subclass
EventResponder()
{
_fwd_gene = _rvs_gene = 0;
_t2t = _h2t_fwd = _h2t_rvs = _h2h = false;
}
bool in_t2t() const { return _t2t; }
bool in_h2h() const { return _h2h; }
bool in_h2t_fwd() const { return _h2t_fwd; }
bool in_h2t_rvs() const { return _h2t_rvs; }
int gene_count() const { return _fwd_gene + _rvs_gene; }
int rvs_gene_count() const { return _rvs_gene; }
int fwd_gene_count() const { return _fwd_gene; }
private:
void set(RegionType r, Direction d, bool tf);
int _fwd_gene, _rvs_gene;
bool _t2t, _h2t_fwd, _h2t_rvs, _h2h;
};
#define EVERY_CHROM(ch, C) \
Genome::iterator C = ch.begin(); C != ch.end(); ++C
#define EVERY_CHROM_CONST(ch, C) \
Genome::const_iterator C = ch.begin(); C != ch.end(); ++C
#define EVERY_REGION(vec, R) \
vector<Region*>::iterator R = vec.begin(); R != vec.end(); ++R
#define EVERY_REGION_CONST(vec, R) \
vector<Region*>::const_iterator R = vec.begin(); R != vec.end(); ++R
#define EVERY_TERM(vec, T) \
vector<Term*>::iterator T = vec.begin(); T != vec.end(); ++T
#define EVERY_TERM_CONST(vec, T) \
vector<Term*>::const_iterator T = vec.begin(); T != vec.end(); ++T
#define EVERY_CTERM_CONST(vec, T) \
vector<const Term*>::const_iterator T = vec.begin(); T != vec.end(); ++T
const char PADDING_CHAR = 'x';
int seqindex(const Seq &, SeqPtr);
string subseq(SeqPtr, SeqPtr);
void read_seqs(istream &, Genome &);
void pad_seqs(Genome &, int);
void pad_seq(Seq &, int);
bool region_isleftof(const Region *, const Region *);
bool hp_overlap(const Term &, const Term &);
bool dominates(const Term &, const Term &);
string dir_str(Direction);
void scan_events(const Seq &, EventResponder &, int, int);
void reverse_scan_events(const Seq &, EventResponder &, int, int);
void sort_genes(Genome &);
Seq * chrom_for_id(Genome &, const string &);
void print_term_seq(ostream &, const Term &);
ostream & operator<<(ostream &, const Term &);
#endif
|