File: maintools.h

package info (click to toggle)
travis 200504%2Bhf2-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 7,540 kB
  • sloc: cpp: 135,321; makefile: 38
file content (502 lines) | stat: -rwxr-xr-x 11,398 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
/*****************************************************************************

    TRAVIS - Trajectory Analyzer and Visualizer

    http://www.travis-analyzer.de/

    Copyright (c) 2009-2020 Martin Brehm
                  2012-2020 Martin Thomas
                  2016-2020 Sascha Gehrke

    Please cite:  J. Chem. Phys. 2020, 152 (16), 164105.         (DOI 10.1063/5.0005078 )
                  J. Chem. Inf. Model. 2011, 51 (8), 2007-2023.  (DOI 10.1021/ci200217w )

    This file was written by Martin Brehm and Martin Thomas.

    ---------------------------------------------------------------------------

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program.  If not, see <http://www.gnu.org/licenses/>.

*****************************************************************************/


#ifndef MAINTOOLS_H
#define MAINTOOLS_H


// This must always be the first include directive
#include "config.h"

#include "travis.h"
#include "tools.h"
#include "database.h"
#include "statistics.h"
#include "element.h"
#include "base64.h"


bool OpenInputTrajectory();
bool CloseInputTrajectory();
bool InputTrajectoryEOF();
bool SeekInputTrajectory(int step);


void WriteRevisionInfo();

void CheckSourceVersion();



int bqbtool_main(int argc, const char *argv[]);

int cubetool_main( int argc, const char *argv[] );





	
class CAutoCorrelation : public CxObject
{
public:
	CAutoCorrelation();
	~CAutoCorrelation();

	void Init(int input, int depth, bool fft);
	void AutoCorrelate(CxDoubleArray *inp, CxDoubleArray *outp);
	void AutoCorrelate(std::vector<double> &inp, std::vector<double> &outp);
	void AutoCorrelateSqrt(CxDoubleArray *inp, CxDoubleArray *outp);

	int m_iInput;
	int m_iDepth;
	int m_iFFTSize;
	bool m_bFFT;
	CFFT *m_pFFT;
	CFFT *m_pFFT2;
};



class CCrossCorrelation : public CxObject                                              
{                                                                                      
public:                                                                                
	CCrossCorrelation();                                                            
	~CCrossCorrelation();                                                           
                                                                                       
	void Init(int input, int depth, bool fft);                                      
	void CrossCorrelate(CxDoubleArray *inp1, CxDoubleArray *inp2, CxDoubleArray *outp);
	void CrossCorrelate(std::vector<double> &inp1, std::vector<double> &inp2, std::vector<double> &outp);
	void CrossCorrelateSymmetric(CxDoubleArray *inp1, CxDoubleArray *inp2, CxDoubleArray *outp);
                                                                                       
	int m_iInput;                                                                   
	int m_iDepth;                                                                   
	int m_iFFTSize;                                                                 
	bool m_bFFT;                                                                    
	CFFT *m_pFFT;                                                                   
	CFFT *m_pFFT2;                                                                  
	CFFT *m_pFFTback;                                                               
};    



class CAtomSort {
public:
	double m_fPos[3];
	double m_fColor[3];
	double m_fRadius;
};



inline bool SORT_AtomSort_Z( const CAtomSort *a1, const CAtomSort *a2 ) {
	
	return a1->m_fPos[2] > a2->m_fPos[2];
}
     
                                                                            

/*void AutoCorrelate(CxFloatArray *inp, CxFloatArray *outp, int depth);
void AutoCorrelate(CxFloatArray *inp, CxFloatArray *outp, int depth, CFFT *fft, CFFT *fft2);*/
CAnalysisGroup* AddAnalysisGroup(const char *name);
void AddAnalysis(CAnalysisGroup* g, const char *name, const char *abbrev);
void InitAnalyses();
void DumpAnalyses();
//void UniteNb();
bool ParseAtom(const char *s, int refmol, int &ty, int &rty, int &atom);
bool ParseRefSystem(int refmol, const char *s, int points);
CTimeStep* GetTimeStep(int i);
CTimeStep** GetTimeStepAddress(int i);
void CalcVelocities();
void CalcVolumetricDataTimeDev();
void CalcCurrentDensity();
void CalcForces();
/*double AtomMass(char *s);
int AtomOrd(char *s);
double AtomRadius(char *s);*/
CElement* FindElement(const char *s, bool quiet);
double GuessBoxSize();
void strtolower(char *s);
void SortAtoms();
void SortElementsLabel();
void SortElementsMass();
bool SetAnalysis(const char *s);
bool ParseFunctions(const char *s);
bool ParsePeriodic(const char *s);
void WriteHeader();
void CommandLineHelp();
bool ParseArgs(int argc, const char *argv[]);
void ParsePassiveArgs(int argc, const char *argv[]);
//void VariablesToDatabase();
//void DatabaseToVariables();
//void WriteDefaultSettings(const char *s);
void CreateDatabaseDefaults();
void LoadSettings();
void InitDatabase();
void RECURSION_BuildCDF(CObservation *o, int channel, int om, CxDoubleArray **data, double *result);
CVirtualAtom* AddVirtualAtom(int mol);
void RemoveAllElements();
void RemoveAllAtoms();
void RemoveAllAnalyses();
void RemoveAllMolecules();
void RemoveAllObservations();
void GetTravisPath();
void ReorderAtoms(int molecule);
void ReorderLikeInput();
void DoubleBoxHelper(unsigned char tpx, unsigned char tpy, unsigned char tpz);
unsigned long GraceColor(int z, double bleach);
void parseCoreCharges();
bool setupWannier();
void ParseDipole();
void parseMagneticDipole();
void DipolGrimme(const char *s);



inline CxDVector3 FoldVector(CxDVector3 v) {

	int n;

	if (g_bBoxNonOrtho) {

		CxDVector3 w;

		w = g_mBoxToOrtho * v;

		n = PeriodicImage1D( w[0], -0.5, 0.5 );
		if (n != 0)
			w[0] -= n;

		n = PeriodicImage1D( w[1], -0.5, 0.5 );
		if (n != 0)
			w[1] -= n;

		n = PeriodicImage1D( w[2], -0.5, 0.5 );
		if (n != 0)
			w[2] -= n;

/*		while (w[0] > 0.5)
			w[0] -= 1.0;
		while (w[0] <= -0.5)
			w[0] += 1.0;
		while (w[1] > 0.5)
			w[1] -= 1.0;
		while (w[1] <= -0.5)
			w[1] += 1.0;
		while (w[2] > 0.5)
			w[2] -= 1.0;
		while (w[2] <= -0.5)
			w[2] += 1.0;*/

		return g_mBoxFromOrtho * w;

	} else {

		if (g_bPeriodicX) {
			n = PeriodicImage1D( v[0], -g_fBoxX/2.0, g_fBoxX/2.0 );
			if (n != 0)
				v[0] -= n*g_fBoxX;
		}

		if (g_bPeriodicY) {
			n = PeriodicImage1D( v[1], -g_fBoxY/2.0, g_fBoxY/2.0 );
			if (n != 0)
				v[1] -= n*g_fBoxY;
		}

		if (g_bPeriodicZ) {
			n = PeriodicImage1D( v[2], -g_fBoxZ/2.0, g_fBoxZ/2.0 );
			if (n != 0)
				v[2] -= n*g_fBoxZ;
		}

/*		if (g_bPeriodicX)
		{
			while (v[0] > g_fBoxX/2)
				v[0] -= g_fBoxX;
			while (v[0] <= -g_fBoxX/2)
				v[0] += g_fBoxX;
		}
		if (g_bPeriodicY)
		{
			while (v[1] > g_fBoxY/2)
				v[1] -= g_fBoxY;
			while (v[1] <= -g_fBoxY/2)
				v[1] += g_fBoxY;
		}
		if (g_bPeriodicZ)
		{
			while (v[2] > g_fBoxZ/2)
				v[2] -= g_fBoxZ;
			while (v[2] <= -g_fBoxZ/2)
				v[2] += g_fBoxZ;
		}*/
	}
	return v;
}



inline CxDVector3 FoldVectorPositive(CxDVector3 v) {

	int n;

	if (g_bBoxNonOrtho) {

		CxDVector3 w;

		w = g_mBoxToOrtho * v;

		n = PeriodicImage1D( w[0], 0, 1.0 );
		if (n != 0)
			w[0] -= n;

		n = PeriodicImage1D( w[1], 0, 1.0 );
		if (n != 0)
			w[1] -= n;

		n = PeriodicImage1D( w[2], 0, 1.0 );
		if (n != 0)
			w[2] -= n;

/*		while (w[0] >= 1.0)
			w[0] -= 1.0;
		while (w[0] < 0)
			w[0] += 1.0;
		while (w[1] >= 1.0)
			w[1] -= 1.0;
		while (w[1] < 0)
			w[1] += 1.0;
		while (w[2] >= 1.0)
			w[2] -= 1.0;
		while (w[2] < 0)
			w[2] += 1.0;*/

		return g_mBoxFromOrtho * w;

	} else {

		if (g_bPeriodicX) {
			n = PeriodicImage1D( v[0], 0, g_fBoxX );
			if (n != 0)
				v[0] -= n*g_fBoxX;
		}

		if (g_bPeriodicY) {
			n = PeriodicImage1D( v[1], 0, g_fBoxY );
			if (n != 0)
				v[1] -= n*g_fBoxY;
		}

		if (g_bPeriodicZ) {
			n = PeriodicImage1D( v[2], 0, g_fBoxZ );
			if (n != 0)
				v[2] -= n*g_fBoxZ;
		}

/*		if (g_bPeriodicX)
		{
			while (v[0] >= g_fBoxX)
				v[0] -= g_fBoxX;
			while (v[0] < 0)
				v[0] += g_fBoxX;
		}
		if (g_bPeriodicY)
		{
			while (v[1] >= g_fBoxY)
				v[1] -= g_fBoxY;
			while (v[1] < 0)
				v[1] += g_fBoxY;
		}
		if (g_bPeriodicZ)
		{
			while (v[2] >= g_fBoxZ)
				v[2] -= g_fBoxZ;
			while (v[2] < 0)
				v[2] += g_fBoxZ;
		}*/
	}
	return v;
}



inline double FoldedLength(CxDVector3 v) {

	int n;

	if (g_bBoxNonOrtho) {

		CxDVector3 w;

		w = g_mBoxToOrtho * v;

		n = PeriodicImage1D( w[0], -0.5, 0.5 );
		if (n != 0)
			w[0] -= n;

		n = PeriodicImage1D( w[1], -0.5, 0.5 );
		if (n != 0)
			w[1] -= n;

		n = PeriodicImage1D( w[2], -0.5, 0.5 );
		if (n != 0)
			w[2] -= n;

/*		while (w[0] > 0.5)
			w[0] -= 1.0;
		while (w[0] <= -0.5)
			w[0] += 1.0;
		while (w[1] > 0.5)
			w[1] -= 1.0;
		while (w[1] <= -0.5)
			w[1] += 1.0;
		while (w[2] > 0.5)
			w[2] -= 1.0;
		while (w[2] <= -0.5)
			w[2] += 1.0;*/

		return (g_mBoxFromOrtho * w).GetLength();

	} else {

		if (g_bPeriodicX) {
			n = PeriodicImage1D( v[0], -g_fBoxX/2.0, g_fBoxX/2.0 );
			if (n != 0)
				v[0] -= n*g_fBoxX;
		}

		if (g_bPeriodicY) {
			n = PeriodicImage1D( v[1], -g_fBoxY/2.0, g_fBoxY/2.0 );
			if (n != 0)
				v[1] -= n*g_fBoxY;
		}

		if (g_bPeriodicZ) {
			n = PeriodicImage1D( v[2], -g_fBoxZ/2.0, g_fBoxZ/2.0 );
			if (n != 0)
				v[2] -= n*g_fBoxZ;
		}

/*		if (g_bPeriodicX)
		{
			while (v[0] > g_fBoxX/2)
				v[0] -= g_fBoxX;
			while (v[0] <= -g_fBoxX/2)
				v[0] += g_fBoxX;
		}
		if (g_bPeriodicY)
		{
			while (v[1] > g_fBoxY/2)
				v[1] -= g_fBoxY;
			while (v[1] <= -g_fBoxY/2)
				v[1] += g_fBoxY;
		}
		if (g_bPeriodicZ)
		{
			while (v[2] > g_fBoxZ/2)
				v[2] -= g_fBoxZ;
			while (v[2] <= -g_fBoxZ/2)
				v[2] += g_fBoxZ;
		}*/

		return v.GetLength();
	}
}



/*inline CxDVector3 FoldVector1(CxDVector3 v)
{
	while (v[0] >= 0.5)
		v[0] -= 1.0;
	while (v[0] < -0.5)
		v[0] += 1.0;

	while (v[1] >= 0.5)
		v[1] -= 1.0;
	while (v[1] < -0.5)
		v[1] += 1.0;

	while (v[2] >= 0.5)
		v[2] -= 1.0;
	while (v[2] < -0.5)
		v[2] += 1.0;

	return v;
}*/


inline double MeshRandom() {

	if (g_bProcAddMeshJitter)
		return ((rand()%20001)-10000)/2000000.0*g_fProcAddMeshJitter;
	else
		return 0;
}


void BuildAtomIndices();
bool DetermineTrajFormat();
void PrintSMode();
void PrintBMode();
void WriteCredits();
void WriteCredits_Long();
unsigned long CalcFFTSize(unsigned long i, bool silent);

//void FormatTime(unsigned long eta, char *buf);
void FormatTime(unsigned long eta, CxString *buf);

void RenderStructFormulas(int tries, bool allsm);
void RenderFormula(const char *s, int tries);
void InitGlobalVars();

void ParseVoronoiRadii();

void DumpNonOrthoCellData();
void ExtractXYZCellGeometry(const char *s);
void ExtractXYZCellGeometry3(const char *s);

void ParseCorrectWavenumber();
double CorrectWavenumber(double w);




const char* GetFileExtension(const char *s);

bool IsElementMetal(const char *s);
bool IsElementNobleGas(const char *s);


#endif