1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
|
.. treelib documentation master file, created by
sphinx-quickstart on Thu Dec 20 16:30:18 2018.
You can adapt this file completely to your liking, but it should at least
contain the root `toctree` directive.
Welcome to treelib's documentation!
***********************************
.. toctree::
:maxdepth: 2
:caption: Contents:
🌳 Introduction
===============
`Tree <http://en.wikipedia.org/wiki/Tree_%28data_structure%29>`_ is a fundamental data structure in computer science, essential for organizing hierarchical data efficiently. `treelib <https://github.com/caesar0301/treelib>`_ provides a comprehensive, high-performance implementation of tree data structures in Python.
**Why choose treelib?**
* 🚀 **Blazing Fast**: O(1) node lookup and access operations
* 🎨 **Rich Visualization**: Beautiful tree display with multiple formatting options
* 🔧 **Flexible Operations**: Comprehensive tree manipulation (add, move, copy, delete)
* 📊 **Export Ready**: JSON, dictionary, and GraphViz export capabilities
* 🔍 **Advanced Search**: Powerful filtering and traversal algorithms
* 💾 **Memory Efficient**: Optimized for both small and large tree structures
**Perfect for:**
* File system representations and directory scanning
* Organizational charts and hierarchical structures
* Decision trees and machine learning models
* Menu systems and navigation structures
* Category taxonomies and classification systems
* Family trees and genealogical data
* Abstract syntax trees for parsers
* Game tree structures and AI algorithms
📦 Installation
===============
Install treelib using pip for the latest stable version:
.. code-block:: bash
pip install treelib
Or install from source for the latest development features:
.. code-block:: bash
git clone https://github.com/caesar0301/treelib.git
cd treelib
pip install poetry
poetry install
**System Requirements:**
* Python 3.7+
🚀 Quick Start Guide
====================
Ready to build your first tree? Let's start with a simple example:
Basic Tree Creation
-------------------
.. code-block:: python
from treelib import Tree
# Create a new tree
tree = Tree()
# Add root node
tree.create_node("Company", "company")
# Add departments
tree.create_node("Engineering", "eng", parent="company")
tree.create_node("Sales", "sales", parent="company")
tree.create_node("HR", "hr", parent="company")
# Add team members
tree.create_node("Alice (CTO)", "alice", parent="eng")
tree.create_node("Bob (Developer)", "bob", parent="eng")
tree.create_node("Carol (Sales Manager)", "carol", parent="sales")
tree.create_node("Dave (HR Manager)", "dave", parent="hr")
# Display the tree
tree.show()
Output:
.. code-block:: text
Company
├── Engineering
│ ├── Alice (CTO)
│ └── Bob (Developer)
├── Sales
│ └── Carol (Sales Manager)
└── HR
└── Dave (HR Manager)
Working with Custom Data
------------------------
Store rich data in your tree nodes:
.. code-block:: python
from treelib import Tree
# Employee data structure
class Employee:
def __init__(self, name, role, salary):
self.name = name
self.role = role
self.salary = salary
def __str__(self):
return f"{self.name} ({self.role})"
# Create tree with custom data
tree = Tree()
tree.create_node("Company", "company")
# Add employees with rich data
tree.create_node("Alice", "alice", parent="company",
data=Employee("Alice Johnson", "CTO", 150000))
tree.create_node("Bob", "bob", parent="alice",
data=Employee("Bob Smith", "Senior Developer", 120000))
# Display with custom data property
tree.show(data_property="role")
Output:
.. code-block:: text
Company
├── CTO
└── Senior Developer
🎯 Core Concepts
================
Understanding Nodes
-------------------
**Nodes** are the building blocks of trees. Each node contains:
* **Identifier**: Unique ID for referencing (auto-generated if not provided)
* **Tag**: Human-readable label for display
* **Data**: Optional custom payload (any Python object)
* **Parent/Children**: Relationships to other nodes
.. code-block:: python
from treelib import Node, Tree
# Create nodes with different configurations
node1 = Node("Simple Node", "n1")
node2 = Node("Rich Node", "n2", data={"type": "folder", "size": 1024})
node3 = Node("Hidden Node", "n3", expanded=False) # Initially collapsed
Understanding Trees
-------------------
**Trees** manage collections of nodes with these key properties:
* **Single Root**: Every tree has exactly one root node (or is empty)
* **Hierarchy**: Each non-root node has exactly one parent
* **Unique IDs**: Node identifiers must be unique within the tree
* **Efficient Access**: O(1) lookup time for any node
.. code-block:: python
tree = Tree()
# Tree properties
print(f"Tree size: {tree.size()}") # Number of nodes
print(f"Tree depth: {tree.depth()}") # Maximum depth
print(f"Root node: {tree.root}") # Root identifier
print(f"Is empty: {len(tree) == 0}") # Empty check
📚 Comprehensive API Guide
==========================
Tree Creation and Basic Operations
----------------------------------
**Creating Trees**
.. code-block:: python
# Empty tree
tree1 = Tree()
# Copy existing tree (shallow)
tree2 = Tree(tree1)
# Deep copy with independent data
tree3 = Tree(tree1, deep=True)
# Tree with custom identifier
tree4 = Tree(identifier="my_tree")
**Adding Nodes**
.. code-block:: python
# Basic node creation
tree.create_node("Root", "root")
tree.create_node("Child", "child", parent="root")
# Node with custom data
tree.create_node("Data Node", "data", parent="root",
data={"key": "value"})
# Pre-created node
node = Node("Pre-made", "premade")
tree.add_node(node, parent="root")
Tree Navigation and Search
--------------------------
**Accessing Nodes**
.. code-block:: python
# Direct access (raises KeyError if not found)
node = tree["node_id"]
# Safe access (returns None if not found)
node = tree.get_node("node_id")
# Check if node exists
if "node_id" in tree:
print("Node exists!")
**Tree Traversal**
.. code-block:: python
# Depth-first traversal (default)
for node_id in tree.expand_tree():
print(f"Visiting: {tree[node_id].tag}")
# Breadth-first traversal
for node_id in tree.expand_tree(mode=Tree.WIDTH):
print(f"Level order: {tree[node_id].tag}")
# ZigZag traversal
for node_id in tree.expand_tree(mode=Tree.ZIGZAG):
print(f"ZigZag: {tree[node_id].tag}")
# Filtered traversal
for node_id in tree.expand_tree(filter=lambda x: x.tag.startswith("A")):
print(f"Starts with A: {tree[node_id].tag}")
**Finding Relationships**
.. code-block:: python
# Get parent node
parent = tree.parent("child_id")
# Get all children
children = tree.children("parent_id")
# Get siblings
siblings = tree.siblings("node_id")
# Get path to root
path = list(tree.rsearch("node_id"))
path_names = [tree[nid].tag for nid in path]
# Check if node is leaf (no children)
is_leaf = tree["node_id"].is_leaf(tree.identifier)
# Check if node is root
is_root = tree["node_id"].is_root(tree.identifier)
Tree Modification
-----------------
**Moving and Reorganizing**
.. code-block:: python
# Move node to new parent
tree.move_node("source_id", "new_parent_id")
# Remove node and all descendants
removed_count = tree.remove_node("node_id")
# Link past a node (remove node but keep children)
tree.link_past_node("node_id")
**Copying and Merging**
.. code-block:: python
# Create subtree
subtree = tree.subtree("root_of_subtree")
# Remove subtree (returns removed tree)
removed_tree = tree.remove_subtree("node_id")
# Paste another tree
tree.paste("target_node", another_tree)
# Merge another tree (paste children only)
tree.merge("target_node", another_tree)
Advanced Features
-----------------
**Filtering and Analysis**
.. code-block:: python
# Filter nodes by condition
large_files = tree.filter_nodes(lambda node:
hasattr(node.data, 'size') and node.data.size > 1000)
# Get all leaf nodes
leaves = tree.leaves()
# Get nodes at specific level
level_2_nodes = [node for node in tree.all_nodes()
if tree.level(node.identifier) == 2]
# Get all paths from root to leaves
all_paths = tree.paths_to_leaves()
**Tree Metrics**
.. code-block:: python
# Basic metrics
total_nodes = tree.size()
max_depth = tree.depth()
# Level-specific metrics
nodes_at_level_2 = tree.size(level=2)
# Custom analysis
def analyze_tree(tree):
analysis = {
'total_nodes': tree.size(),
'depth': tree.depth(),
'leaves': len(tree.leaves()),
'internal_nodes': tree.size() - len(tree.leaves()),
'branching_factor': sum(len(tree.children(node.identifier))
for node in tree.all_nodes()) / tree.size()
}
return analysis
🎨 Visualization and Display
============================
Rich Display Options
--------------------
.. code-block:: python
# Basic display
tree.show()
# Custom line styles
tree.show(line_type="ascii-em") # Double lines
tree.show(line_type="ascii-emv") # Mixed vertical
tree.show(line_type="ascii") # Simple ASCII
# Show node IDs
tree.show(idhidden=False)
# Sort nodes at each level
tree.show(key=lambda x: x.tag, reverse=True)
# Display custom data property
tree.show(data_property="name")
Available Line Styles:
.. code-block:: text
ascii: |-- Child
ascii-ex: ├── Child (default)
ascii-exr: ├── Child (rounded)
ascii-em: ╠══ Child (double)
ascii-emv: ╟── Child (mixed vertical)
ascii-emh: ╞══ Child (mixed horizontal)
Conditional Display
-------------------
.. code-block:: python
# Hide specific branches
tree.show(filter=lambda x: x.identifier != "hidden_branch")
# Show only certain node types
tree.show(filter=lambda x: hasattr(x.data, 'type') and x.data.type == "folder")
# Custom formatting function
def custom_filter(node):
# Show only nodes with tags starting with uppercase
return node.tag[0].isupper()
tree.show(filter=custom_filter)
💾 Export and Persistence
=========================
JSON Export/Import
------------------
.. code-block:: python
# Export to JSON string
json_string = tree.to_json()
# Export with data included
json_with_data = tree.to_json(with_data=True)
# Pretty printed JSON
import json
formatted_json = json.dumps(json.loads(tree.to_json()), indent=2)
Dictionary Conversion
--------------------
.. code-block:: python
# Convert to dictionary
tree_dict = tree.to_dict()
# Include data in dictionary
tree_dict = tree.to_dict(with_data=True)
# Custom sorting
tree_dict = tree.to_dict(sort=True, reverse=True)
File Operations
---------------
.. code-block:: python
# Save tree structure to file
tree.save2file("tree_structure.txt")
# Custom formatting when saving
tree.save2file("tree.txt", line_type="ascii-em", data_property="name")
GraphViz Export
---------------
.. code-block:: python
# Export to DOT format for GraphViz
tree.to_graphviz("tree.dot")
# Custom node shapes
tree.to_graphviz("tree.dot", shape="box")
# Directed graph
tree.to_graphviz("tree.dot", graph="digraph")
🏗️ Real-World Examples
======================
File System Scanner
-------------------
Build a directory tree scanner:
.. code-block:: python
import os
from treelib import Tree
def scan_directory(path, tree=None, parent=None, max_depth=3, current_depth=0):
"""Scan directory and build tree structure."""
if tree is None:
tree = Tree()
tree.create_node(os.path.basename(path) or path, path)
parent = path
if current_depth >= max_depth:
return tree
try:
for item in sorted(os.listdir(path)):
item_path = os.path.join(path, item)
if os.path.isdir(item_path):
tree.create_node(f"📁 {item}", item_path, parent=parent)
scan_directory(item_path, tree, item_path, max_depth, current_depth + 1)
else:
size = os.path.getsize(item_path)
tree.create_node(f"📄 {item} ({size} bytes)", item_path, parent=parent)
except PermissionError:
pass
return tree
# Usage
file_tree = scan_directory("/path/to/directory", max_depth=2)
file_tree.show()
Organization Chart
------------------
Create a company organizational structure:
.. code-block:: python
from treelib import Tree
class Employee:
def __init__(self, name, title, department, email=None):
self.name = name
self.title = title
self.department = department
self.email = email
def __str__(self):
return f"{self.name} - {self.title}"
def build_org_chart():
org = Tree()
# CEO
org.create_node("CEO", "ceo",
data=Employee("John Smith", "Chief Executive Officer", "Executive"))
# VPs
org.create_node("VP Engineering", "vp_eng", parent="ceo",
data=Employee("Sarah Johnson", "VP Engineering", "Engineering"))
org.create_node("VP Sales", "vp_sales", parent="ceo",
data=Employee("Mike Wilson", "VP Sales", "Sales"))
# Engineering Team
org.create_node("Engineering Manager", "eng_mgr", parent="vp_eng",
data=Employee("Alice Brown", "Engineering Manager", "Engineering"))
org.create_node("Senior Developer", "senior_dev", parent="eng_mgr",
data=Employee("Bob Davis", "Senior Developer", "Engineering"))
org.create_node("Junior Developer", "junior_dev", parent="eng_mgr",
data=Employee("Carol White", "Junior Developer", "Engineering"))
# Sales Team
org.create_node("Sales Manager", "sales_mgr", parent="vp_sales",
data=Employee("Dave Green", "Sales Manager", "Sales"))
org.create_node("Sales Rep", "sales_rep", parent="sales_mgr",
data=Employee("Eve Black", "Sales Representative", "Sales"))
return org
# Usage
org_chart = build_org_chart()
# Display with titles
org_chart.show(data_property="title")
# Find all engineering employees
engineering_staff = [node for node in org_chart.all_nodes()
if node.data.department == "Engineering"]
Decision Tree
-------------
Implement a simple decision tree:
.. code-block:: python
from treelib import Tree
class DecisionNode:
def __init__(self, question=None, answer=None, condition=None):
self.question = question
self.answer = answer
self.condition = condition
def __str__(self):
if self.answer:
return f"Answer: {self.answer}"
return f"Question: {self.question}"
def build_decision_tree():
"""Build a simple decision tree for weather activities."""
tree = Tree()
# Root decision
tree.create_node("Weather Decision", "root",
data=DecisionNode("Is it sunny?"))
# Sunny branch
tree.create_node("Sunny", "sunny", parent="root",
data=DecisionNode("Is it hot?"))
tree.create_node("Go Swimming", "swim", parent="sunny",
data=DecisionNode(answer="Go to the beach!"))
tree.create_node("Go Hiking", "hike", parent="sunny",
data=DecisionNode(answer="Perfect for a hike!"))
# Not sunny branch
tree.create_node("Not Sunny", "cloudy", parent="root",
data=DecisionNode("Is it raining?"))
tree.create_node("Stay Inside", "inside", parent="cloudy",
data=DecisionNode(answer="Movie day!"))
tree.create_node("Light Activity", "light", parent="cloudy",
data=DecisionNode(answer="Good for shopping!"))
return tree
# Usage
decision_tree = build_decision_tree()
decision_tree.show()
📊 Performance and Best Practices
=================================
Performance Characteristics
---------------------------
**Time Complexity:**
* Node access: O(1)
* Node insertion: O(1)
* Tree traversal: O(n)
* Search operations: O(n)
* Subtree operations: O(k) where k is subtree size
**Memory Usage:**
* Each node: ~200 bytes + data size
* Tree overhead: ~100 bytes + node dictionary
* Shallow copy: Shares node references (minimal memory)
* Deep copy: Duplicates all data (2x memory usage)
Best Practices
--------------
**Choosing Identifiers**
.. code-block:: python
# Good: Meaningful, unique identifiers
tree.create_node("User Profile", "user_123")
tree.create_node("Settings", "user_123_settings", parent="user_123")
# Avoid: Generic or potentially conflicting IDs
tree.create_node("Item", "1") # Too generic
tree.create_node("Data", "data") # Might conflict
**Memory Management**
.. code-block:: python
# For large trees, consider lazy loading
def load_children_on_demand(tree, node_id):
if not tree.is_branch(node_id): # No children loaded yet
# Load children from database/file
load_node_children(tree, node_id)
# Use shallow copies when possible
backup_tree = Tree(original_tree, deep=False)
# Clean up references when done
del large_tree
**Error Handling**
.. code-block:: python
from treelib.exceptions import NodeIDAbsentError, DuplicatedNodeIdError
try:
tree.create_node("New Node", "existing_id")
except DuplicatedNodeIdError:
print("Node ID already exists!")
try:
node = tree["nonexistent"]
except NodeIDAbsentError:
print("Node not found!")
# Safe alternative
node = tree.get_node("might_not_exist")
if node is not None:
print(f"Found: {node.tag}")
🔧 Advanced Topics
==================
Custom Node Classes
-------------------
Extend the Node class for specialized functionality:
.. code-block:: python
from treelib import Node, Tree
class FileNode(Node):
def __init__(self, tag, identifier=None, size=0, file_type="unknown"):
super().__init__(tag, identifier)
self.size = size
self.file_type = file_type
@property
def size_mb(self):
return self.size / (1024 * 1024)
def is_large_file(self):
return self.size > 10 * 1024 * 1024 # 10MB
# Use custom node class
file_tree = Tree(node_class=FileNode)
file_tree.create_node("Large File", "big_file", size=50*1024*1024, file_type="video")
Tree Algorithms
---------------
Implement custom tree algorithms:
.. code-block:: python
def find_path(tree, start_id, end_id):
"""Find path between two nodes."""
# Get path from start to root
start_path = list(tree.rsearch(start_id))
# Get path from end to root
end_path = list(tree.rsearch(end_id))
# Find common ancestor
common_ancestors = set(start_path) & set(end_path)
if not common_ancestors:
return None
# Find lowest common ancestor
lca = min(common_ancestors, key=lambda x: tree.level(x))
# Construct path
start_to_lca = start_path[:start_path.index(lca)]
lca_to_end = end_path[:end_path.index(lca)]
return start_to_lca + [lca] + lca_to_end[::-1]
def tree_statistics(tree):
"""Calculate comprehensive tree statistics."""
stats = {}
# Basic stats
stats['total_nodes'] = tree.size()
stats['depth'] = tree.depth()
stats['leaves'] = len(tree.leaves())
# Level distribution
level_counts = {}
for node in tree.all_nodes():
level = tree.level(node.identifier)
level_counts[level] = level_counts.get(level, 0) + 1
stats['level_distribution'] = level_counts
# Branching factor
branching_factors = []
for node in tree.all_nodes():
children_count = len(tree.children(node.identifier))
if children_count > 0:
branching_factors.append(children_count)
if branching_factors:
stats['avg_branching_factor'] = sum(branching_factors) / len(branching_factors)
stats['max_branching_factor'] = max(branching_factors)
return stats
Multi-Tree Operations
--------------------
Work with multiple trees simultaneously:
.. code-block:: python
def merge_trees(tree1, tree2, merge_point):
"""Merge two trees at specified point."""
if not tree1.contains(merge_point):
raise ValueError(f"Merge point {merge_point} not found in tree1")
# Create deep copy to avoid modifying original
merged_tree = Tree(tree1, deep=True)
tree2_copy = Tree(tree2, deep=True)
# Merge at specified point
merged_tree.paste(merge_point, tree2_copy)
return merged_tree
def compare_trees(tree1, tree2):
"""Compare two trees structurally."""
def get_structure(tree, node_id=None):
if node_id is None:
node_id = tree.root
children = tree.children(node_id)
if not children:
return tree[node_id].tag
return {
'tag': tree[node_id].tag,
'children': [get_structure(tree, child.identifier) for child in children]
}
return get_structure(tree1) == get_structure(tree2)
🚨 Troubleshooting
==================
Common Issues and Solutions
---------------------------
**Problem: "NodeIDAbsentError" when accessing nodes**
.. code-block:: python
# Problem: Node doesn't exist
try:
node = tree["nonexistent_id"]
except NodeIDAbsentError:
print("Node not found!")
# Solution: Use safe access
node = tree.get_node("nonexistent_id")
if node is None:
print("Node not found!")
**Problem: "DuplicatedNodeIdError" when creating nodes**
.. code-block:: python
# Problem: ID already exists
tree.create_node("First", "duplicate_id")
# tree.create_node("Second", "duplicate_id") # This will fail!
# Solution: Check existence first
if "duplicate_id" not in tree:
tree.create_node("Second", "duplicate_id")
**Problem: Memory issues with large trees**
.. code-block:: python
# Problem: Deep copying large trees
# large_tree_copy = Tree(large_tree, deep=True) # Uses lots of memory
# Solution: Use shallow copy when possible
large_tree_copy = Tree(large_tree, deep=False) # Shares references
**Problem: Performance issues with frequent modifications**
.. code-block:: python
# Problem: Adding many nodes one by one
for i in range(10000):
tree.create_node(f"Node {i}", f"node_{i}", parent="root")
# Solution: Batch operations when possible
root_id = "root"
nodes_to_add = [(f"Node {i}", f"node_{i}") for i in range(10000)]
for tag, node_id in nodes_to_add:
tree.create_node(tag, node_id, parent=root_id)
Debug and Inspection Tools
-------------------------
.. code-block:: python
def debug_tree(tree, node_id=None):
"""Print detailed tree debug information."""
print(f"Tree Debug Info:")
print(f" Tree ID: {tree.identifier}")
print(f" Root: {tree.root}")
print(f" Size: {tree.size()}")
print(f" Depth: {tree.depth()}")
if node_id:
if tree.contains(node_id):
node = tree[node_id]
print(f"\nNode '{node_id}' Debug:")
print(f" Tag: {node.tag}")
print(f" Level: {tree.level(node_id)}")
print(f" Is Leaf: {node.is_leaf(tree.identifier)}")
print(f" Is Root: {node.is_root(tree.identifier)}")
print(f" Children: {len(tree.children(node_id))}")
print(f" Parent: {tree.parent(node_id)}")
else:
print(f"Node '{node_id}' not found!")
def validate_tree_integrity(tree):
"""Validate tree structure integrity."""
issues = []
# Check root existence
if tree.root and not tree.contains(tree.root):
issues.append("Root node reference is invalid")
# Check parent-child consistency
for node_id, node in tree.nodes.items():
parent_id = node.predecessor(tree.identifier)
if parent_id:
if not tree.contains(parent_id):
issues.append(f"Node {node_id} has invalid parent {parent_id}")
else:
parent_children = tree.children(parent_id)
if node not in parent_children:
issues.append(f"Parent-child relationship inconsistent for {node_id}")
return issues
📖 API Reference
================
For detailed API documentation of all methods and classes, see the automatically generated documentation sections below.
.. toctree::
:maxdepth: 2
modules
🤝 Contributing and Support
===========================
**Found a bug or have a feature request?**
Open an issue on `GitHub <https://github.com/caesar0301/treelib/issues>`_
**Want to contribute?**
Fork the repository and submit a pull request!
**Need help?**
Check out the `examples directory <https://github.com/caesar0301/treelib/tree/master/examples>`_ for comprehensive usage examples.
**Performance benchmarks and advanced examples:**
See the `tree_algorithms.py <https://github.com/caesar0301/treelib/blob/master/examples/tree_algorithms.py>`_ example for algorithmic implementations and performance analysis.
Indices and tables
==================
* :ref:`genindex`
* :ref:`modindex`
* :ref:`search`
|