1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
|
/*
//@HEADER
// ***********************************************************************
//
// Ifpack2: Templated Object-Oriented Algebraic Preconditioner Package
// Copyright (2009) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
//@HEADER
*/
/*! \file Ifpack2_UnitTestBlockCrsUtil.hpp
\brief Ifpack2 Unit and performance test utilities for preconditioners that use
Tpetra::BlockCrsMatrix.
*/
#ifndef IFPACK2_UNITTEST_BLOCKCRS_UTIL_HPP
#define IFPACK2_UNITTEST_BLOCKCRS_UTIL_HPP
#include <Tpetra_Map.hpp>
#include <Tpetra_Import.hpp>
#include <Tpetra_Export.hpp>
#include <Tpetra_CrsGraph.hpp>
#include <Tpetra_BlockCrsMatrix.hpp>
#include <Tpetra_BlockMultiVector.hpp>
namespace tif_utest {
template <typename Scalar, typename LO, typename GO>
struct BlockCrsMatrixMaker {
typedef LO Int;
typedef typename Teuchos::ScalarTraits<Scalar>::magnitudeType Magnitude;
typedef Tpetra::Map<LO, GO> Tpetra_Map;
typedef Tpetra::Import<LO, GO> Tpetra_Import;
typedef Tpetra::Export<LO, GO> Tpetra_Export;
typedef Tpetra::MultiVector<Scalar, LO, GO> Tpetra_MultiVector;
typedef Tpetra::MultiVector<typename Teuchos::ScalarTraits<Scalar>::magnitudeType, LO, GO>
Tpetra_MultiVector_Magnitude;
typedef Tpetra::BlockMultiVector<Scalar, LO, GO> Tpetra_BlockMultiVector;
typedef Tpetra::CrsGraph<LO, GO> Tpetra_CrsGraph;
typedef Tpetra::RowMatrix<Scalar, LO, GO> Tpetra_RowMatrix;
typedef Tpetra::BlockCrsMatrix<Scalar, LO, GO> Tpetra_BlockCrsMatrix;
// Representation of a structured block mesh. The fastest index is k.
struct StructuredBlock {
const Int ni, nj, nk;
StructuredBlock (const Int ni_, const Int nj_, const Int nk_, const bool contiguous = true)
: ni(ni_), nj(nj_), nk(nk_), njnk_(nj_*nk_), contiguous_(contiguous) {}
KOKKOS_INLINE_FUNCTION GO size () const { return ni*njnk_; }
KOKKOS_INLINE_FUNCTION bool is_contiguous () const { return contiguous_; }
KOKKOS_INLINE_FUNCTION GO ijk2id (const Int i, const Int j, const Int k) const {
return (keep_same_gids_ || contiguous_ ?
(i*nj + j)*nk + k :
(k*nj + j)*ni + i);
}
KOKKOS_INLINE_FUNCTION void id2ijk (const GO id, Int& i, Int& j, Int& k) const {
if (keep_same_gids_ || contiguous_) {
i = id / njnk_;
k = id % njnk_;
j = k / nk;
k = k % nk;
} else {
const auto njni = nj*ni;
k = id / njni;
i = id % njni;
j = i / ni;
i = i % ni;
}
}
private:
const GO njnk_;
const bool contiguous_;
// Originally, I tested with different GIDs in the noncontiguous case. But
// that means the math problem ends up being different. I prefer the
// contiguous and noncontiguous tests to test the same linear equation.
enum : bool { keep_same_gids_ = true };
};
// Part of the block owned by this process. Split the block in i and j directions.
struct StructuredBlockPart {
Int is, ie, js, je, ks, ke;
StructuredBlockPart (const Int iis, const Int iie, const Int ijs, const Int ije,
const Int iks, const Int ike)
: is(iis), ie(iie), js(ijs), je(ije), ks(iks), ke(ike)
{}
};
struct StencilShape { enum Enum { cross }; };
static void partition_n_uniformly (const Int n, const Int nparts, std::vector<Int>& p) {
p.resize(nparts + 1);
const Int base = n / nparts;
Int rem = n - base*nparts;
Int extra = rem > 0 ? 1 : 0;
p[0] = 0;
for (Int i = 1; i <= nparts; ++i) {
p[i] = p[i-1] + base + extra;
if (rem > 0) {
--rem;
if (rem == 0) extra = 0;
}
}
}
static StructuredBlockPart make_StructuredBlockPart (
const StructuredBlock& sb, const Int isplit, const Int jsplit, const Int rank)
{
TEUCHOS_TEST_FOR_EXCEPT_MSG(isplit > sb.ni || jsplit > sb.nj,
"splits must be <= dimension; isplit jsplit ni nj " <<
isplit << " " << jsplit << " " << sb.ni << " " << sb.nj);
const Int ios = rank / jsplit;
const Int jos = rank % jsplit;
std::vector<Int> p;
p.reserve(std::max(isplit, jsplit) + 1);
partition_n_uniformly(sb.ni, isplit, p);
const Int is = p[ios];
const Int ie = p[ios+1];
TEUCHOS_ASSERT(is >= 0 && is < ie && ie <= sb.ni);
partition_n_uniformly(sb.nj, jsplit, p);
const Int js = p[jos];
const Int je = p[jos+1];
TEUCHOS_ASSERT(js >= 0 && js < je && je <= sb.nj);
return StructuredBlockPart(is, ie, js, je, 0, sb.nk);
}
// Correctness check the testing utility struct StructuredBlockPart.
static Int test_StructuredBlockPart (const Int ni_max, const Int nj_max, const bool contiguous) {
Int nerr = 0;
const Int nk = 10;
std::vector<Int> hit;
hit.reserve(ni_max*nj_max);
for (Int ni = 1; ni <= ni_max; ++ni) {
for (Int nj = 1; nj <= nj_max; ++nj) {
hit.resize(ni*nj*nk, 0);
StructuredBlock sb(ni, nj, nk, contiguous);
for (Int nrank = 0, max_nrank = ni*nj; nrank < max_nrank; ++nrank) {
for (Int isplit = 1, i_max = std::min(nrank, ni); isplit <= i_max; ++isplit) {
const Int jsplit = nrank / isplit;
if (jsplit >= nj || isplit*jsplit != nrank) continue;
std::fill(hit.begin(), hit.end(), 0);
for (Int rank = 0; rank < nrank; ++rank) {
auto sbp = make_StructuredBlockPart(sb, isplit, jsplit, rank);
for (Int i = sbp.is; i < sbp.ie; ++i)
for (Int j = sbp.js; j < sbp.je; ++j)
for (Int k = sbp.ks; k < sbp.ke; ++k)
++hit[sb.ijk2id(i, j, k)];
}
bool all1 = true;
for (const auto e : hit)
if (e != 1) {
all1 = false;
break;
}
if ( ! all1) ++nerr;
}
}
}
}
return nerr;
}
// blockrow(b,i,j) is the set of blocks in this block row. (I,J,K) is the cell
// in the mesh. n_blocks is the number of blocks in this row. diag_idx is the
// index into 0 : n_blocks-1 corresponding to the diagonal block. max_blocks is
// the max number of blocks in a row or column.
// Fill the values with reasonably interesting, deterministically generated
// (not random), parallel consistent, values.
template <typename T> static void
make_entry (const Int& B1, const Int& B2, const Int& i, const Int& j, const GO& c,
T& e) {
e = ((c+i-j) % 14)/12.0 + ((B1-i) % 13)/14.0 - ((B2+j) % 17)/12.0 + 1e-7;
}
#ifdef HAVE_TEUCHOS_COMPLEX
template <typename T> static void
make_entry (const Int& B1, const Int& B2, const Int& i, const Int& j, const GO& c,
std::complex<T>& e) {
T re, im;
make_entry(B1, B2, i, j, c , re);
make_entry(B2, B1, j, i, c+1, im);
e = std::complex<T>(re, im);
}
#endif
template <typename Array3D> static void fill_block_row (
const Int I, const Int J, const Int K, const GO* gids, const Int n_blocks,
const Int diag_idx, const Int max_blocks, Array3D blockrow)
{
const Int bs = blockrow.extent_int(2);
TEUCHOS_TEST_FOR_EXCEPT_MSG(blockrow.extent_int(1) != bs, "Blocks must be square.");
TEUCHOS_TEST_FOR_EXCEPT_MSG(blockrow.extent_int(0) < n_blocks,
"blockrow is not consistent with n_blocks: blockrow.extent(0) = "
<< blockrow.extent(0) << " but n_blocks = " << n_blocks);
const Int B1 = I + 3*J + 5*K;
const Int B2 = 5*I + J + 3*K;
for (Int b = 0; b < n_blocks; ++b)
for (Int i = 0; i < bs; ++i)
for (Int j = 0; j < bs; ++j) {
const auto c = gids[b];
make_entry(B1, B2, i, j, c, blockrow(b,i,j));
}
}
template <typename T> static KOKKOS_INLINE_FUNCTION T abs (const T& v) { return std::abs(v); }
template <typename T> static KOKKOS_INLINE_FUNCTION T abs (const Kokkos::complex<T>& v) { return Kokkos::abs(v); }
template <typename T> static KOKKOS_INLINE_FUNCTION T signof (const T& v) { return v >= 0 ? 1 : -1; }
template <typename T> static KOKKOS_INLINE_FUNCTION Kokkos::complex<T> signof (const Kokkos::complex<T>& v)
{ return v == 0 ? 1 : v / Kokkos::abs(v); }
// Given a matrix A with a 1D (row) partition, find new diagonal values so that
// it is row and column diagonally dominant. This requires global communication
// of local column abs sums.
static void make_row_and_col_diag_dominant (Tpetra_BlockCrsMatrix& a) {
const auto& g = a.getCrsGraph();
const auto& rowptr = g.getLocalGraph().row_map;
const auto& colidx = g.getLocalGraph().entries;
const auto& values = a.getValuesHost();
const auto row_map = g.getRowMap();
const auto col_map = g.getColMap();
const LO bs = a.getBlockSize(), bs2 = bs*bs;
const LO nrows = rowptr.size() - 1;
// Accumulate into these arrays.
std::vector<Magnitude> rowsum(bs*a.getNodeNumRows(), 0);
const auto cpm = Teuchos::rcp(
new Tpetra_Map(Tpetra_BlockMultiVector::makePointMap(*col_map, bs)));
Tpetra_MultiVector_Magnitude colsum_mv(cpm, 1);
colsum_mv.putScalar(0);
auto colsum = colsum_mv.getLocalViewHost();
// Get off-diag 1-norms.
for (LO r = 0; r < nrows; ++r) {
const auto rgid = row_map->getGlobalElement(r);
for (size_t j = rowptr(r); j < rowptr(r+1); ++j) {
const LO c = colidx(j);
const auto cgid = col_map->getGlobalElement(c);
const bool diag_block = cgid == rgid;
auto* const block = &values(j*bs2);
for (Int bi = 0; bi < bs; ++bi)
for (Int bj = 0; bj < bs; ++bj) {
if (diag_block && bj == bi) continue;
const auto e = abs(block[bi*bs + bj]);
rowsum[bs*r + bi] += e;
colsum(bs*c + bj, 0) += e;
}
}
}
{ // Is this the best way to do overlap -ADD-> overlap?
// overlap -ADD-> nonoverlap
Tpetra_MultiVector_Magnitude d(a.getDomainMap(), 1); {
Tpetra_Export exporter(cpm, a.getDomainMap());
d.doExport(colsum_mv, exporter, Tpetra::ADD);
}
// nonoverlap -REPLACE-> overlap
Tpetra_Import importer(a.getDomainMap(), cpm);
colsum_mv.doImport(d, importer, Tpetra::REPLACE);
}
// Modify diag entries.
for (LO r = 0; r < nrows; ++r) {
const auto rgid = row_map->getGlobalElement(r);
for (size_t j = rowptr(r); j < rowptr(r+1); ++j) {
const LO c = colidx(j);
const auto cgid = col_map->getGlobalElement(c);
const bool diag_block = cgid == rgid;
if ( ! diag_block) continue;
auto* const block = &values(j*bs2);
for (Int bi = 0; bi < bs; ++bi) {
auto& e = block[bi*bs + bi];
e = Magnitude(1.01)*std::max(rowsum[bs*r + bi], colsum(bs*c + bi, 0))*signof(e);
}
}
}
}
static Teuchos::RCP<Tpetra_CrsGraph>
make_crs_graph (const Teuchos::RCP<const Teuchos::Comm<int> >& comm,
const StructuredBlock& sb, const StructuredBlockPart& sbp,
const bool tridiags_only = false, const bool different_maps = false) {
const GO idx_base = 0;
const GO num_gbl_cell = sb.ni*sb.nj*sb.nk;
Teuchos::RCP<Tpetra_Map> row_map;
std::vector<GO> my_row_gids;
{
const GO num_my_cell = (sbp.ie - sbp.is)*(sbp.je - sbp.js)*(sbp.ke - sbp.ks);
my_row_gids.resize(num_my_cell, 0);
{
GO cnt = 0;
for (Int i = sbp.is; i < sbp.ie; ++i) {
if (sb.is_contiguous()) {
for (Int j = sbp.js; j < sbp.je; ++j)
for (Int k = sbp.ks; k < sbp.ke; ++k, ++cnt)
my_row_gids[cnt] = sb.ijk2id(i,j,k);
} else {
// The noncontiguity test modifies multiple things: NC1. Make tridiags
// pull noncontiguously from the LID space.
for (Int k = sbp.ks; k < sbp.ke; ++k)
for (Int j = sbp.js; j < sbp.je; ++j, ++cnt)
my_row_gids[cnt] = sb.ijk2id(i,j,k);
}
}
row_map = Teuchos::rcp(new Tpetra_Map(num_gbl_cell, my_row_gids.data(),
my_row_gids.size(), idx_base, comm));
}
}
Teuchos::RCP<Tpetra_Map> col_map;
{
const auto pad_extent = [] (Int& s, Int& e, const Int ncell) {
Int n = e - s;
if (s > 0) { ++n; --s; }
if (e < ncell) { ++n; ++e; }
return n;
};
auto sbppad(sbp);
pad_extent(sbppad.is, sbppad.ie, sb.ni);
pad_extent(sbppad.js, sbppad.je, sb.nj);
pad_extent(sbppad.ks, sbppad.ke, sb.nk);
std::vector<GO> my_col_gids;
{
my_col_gids.insert(my_col_gids.begin(), my_row_gids.begin(), my_row_gids.end());
if ( ! sb.is_contiguous()) {
// NC2. Do a different ordering of (i,j,k) than in the row case. Thus,
// lclrow != lclcol.
std::vector<GO> v(my_col_gids);
size_t j = 0;
for (size_t i = 0; i < v.size(); i += 2) my_col_gids[j++] = v[i];
for (size_t i = 1; i < v.size(); i += 2) my_col_gids[j++] = v[i];
}
const Int lims[6][3][2] =
{{{sbppad.is, sbp.is}, {sbp.js, sbp.je}, {sbp.ks, sbp.ke}},
{{sbp.ie, sbppad.ie}, {sbp.js, sbp.je}, {sbp.ks, sbp.ke}},
{{sbp.is, sbp.ie}, {sbppad.js, sbp.js}, {sbp.ks, sbp.ke}},
{{sbp.is, sbp.ie}, {sbp.je, sbppad.je}, {sbp.ks, sbp.ke}},
{{sbp.is, sbp.ie}, {sbp.js, sbp.je}, {sbppad.ks, sbp.ks}},
{{sbp.is, sbp.ie}, {sbp.js, sbp.je}, {sbp.ke, sbppad.ke}}};
for (Int li = 0; li < 6; ++li)
for (Int i = lims[li][0][0]; i < lims[li][0][1]; ++i)
for (Int j = lims[li][1][0]; j < lims[li][1][1]; ++j)
for (Int k = lims[li][2][0]; k < lims[li][2][1]; ++k)
my_col_gids.push_back(sb.ijk2id(i,j,k));
col_map = Teuchos::rcp(new Tpetra_Map(Teuchos::OrdinalTraits<Tpetra::global_size_t>::invalid(),
my_col_gids.data(), my_col_gids.size(), idx_base, comm));
}
}
typename Tpetra_CrsGraph::local_graph_type g;
{
typedef typename Tpetra_CrsGraph::local_graph_type::row_map_type row_map_type;
typedef typename Tpetra_CrsGraph::local_graph_type::entries_type entries_type;
const GO nr = my_row_gids.size();
typename row_map_type::non_const_type::HostMirror rowptr("rowptr", nr + 1);
typename entries_type::HostMirror colidx;
GO nnz = 0;
for (Int pass = 0; pass < 2; ++pass) {
if (pass == 0) {
// Counting pass.
Kokkos::deep_copy(rowptr, 0);
} else {
// Fill pass.
colidx = typename entries_type::HostMirror("colidx", nnz);
// Cumsum.
for (Int i = 2; i <= nr; ++i)
rowptr(i) += rowptr(i-1);
}
// For each owned cell:
for (Int i = sbp.is; i < sbp.ie; ++i)
for (Int j = sbp.js; j < sbp.je; ++j)
for (Int k = sbp.ks; k < sbp.ke; ++k) {
const GO my_gid = sb.ijk2id(i,j,k);
const LO row_lid = row_map->getLocalElement(my_gid);
// For each nbr and myself:
for (Int ni = std::max(i-1, 0); ni < std::min(i+2, sb.ni); ++ni)
for (Int nj = std::max(j-1, 0); nj < std::min(j+2, sb.nj); ++nj) {
if (tridiags_only && (ni != i || nj != j)) continue;
for (Int nk = std::max(k-1, 0); nk < std::min(k+2, sb.nk); ++nk) {
if (Int(ni == i) + Int(nj == j) + Int(nk == k) < 2) continue;
if (pass == 0) {
if (row_lid+2 <= nr)
++rowptr(row_lid+2);
++nnz;
} else {
const GO nbr_gid = sb.ijk2id(ni,nj,nk);
const LO col_lid = col_map->getLocalElement(nbr_gid);
colidx(rowptr(row_lid+1)++) = col_lid;
}
}
}
}
}
TEUCHOS_ASSERT(static_cast<GO>(rowptr(nr)) == nnz);
// Sort columns in each row.
for (Int r = 0; r < nr; ++r)
std::sort(colidx.data() + rowptr(r), colidx.data() + rowptr(r+1));
{
typename row_map_type::non_const_type row_map_tmp("row_map", rowptr.size());
Kokkos::deep_copy(row_map_tmp, rowptr);
entries_type entries("entries", colidx.size());
Kokkos::deep_copy(entries, colidx);
g = typename Tpetra_CrsGraph::local_graph_type(entries, row_map_tmp);
}
if ( ! tridiags_only) {
const GO n_full_bpr = std::max(0, (sb.nk - 2)*(sb.nj - 2)*(sb.ni - 2));
const GO n_4_bpr = (sb.nk >= 2 ? 2 : 1)*(sb.nj >= 2 ? 2 : 1)*(sb.ni >= 2 ? 2 : 1);
Int i_full_bpr = 0, i_4_bpr = 0;
for (Int r = 0; r < nr; ++r) {
const Int bpr = rowptr(r+1) - rowptr(r);
if (bpr == 7) ++i_full_bpr;
else if (bpr == 4) ++i_4_bpr;
}
GO lcl[] = {i_full_bpr, i_4_bpr}, gbl[2];
Teuchos::reduceAll(*comm, Teuchos::REDUCE_SUM, 2, lcl, gbl);
TEUCHOS_ASSERT(gbl[0] == n_full_bpr);
TEUCHOS_ASSERT(gbl[1] == n_4_bpr);
}
}
if (different_maps) {
auto G = Teuchos::rcp(new Tpetra_CrsGraph(row_map, col_map, g.row_map, g.entries));
Teuchos::RCP<Tpetra_Map> rng_map, dmn_map;
{ // Make all the maps have different orderings. These additional
// permutations are not decomposition-independent, unlike every other
// aspect of these manufactured problems.
std::vector<GO> my_gids(my_row_gids);
const auto rank = comm->getRank();
// Deterministic permutation.
for (size_t i = 0; i < my_gids.size(); ++i)
std::swap(my_gids[i],
my_gids[((rank + 3*i) + (i % 11)*(i % 7)) % my_gids.size()]);
rng_map = Teuchos::rcp(new Tpetra_Map(num_gbl_cell, my_gids.data(),
my_gids.size(), idx_base, comm));
for (size_t i = 0; i < my_gids.size(); ++i)
std::swap(my_gids[i],
my_gids[((rank + 2*i) + (i % 13)*(i % 5)) % my_gids.size()]);
dmn_map = Teuchos::rcp(new Tpetra_Map(num_gbl_cell, my_gids.data(),
my_gids.size(), idx_base, comm));
}
G->fillComplete(dmn_map, rng_map);
return G;
} else {
return Teuchos::rcp(new Tpetra_CrsGraph(row_map, col_map, g, Teuchos::null));
}
}
static void
get_offdiag_idxs (const StructuredBlock& sb, const Tpetra_CrsGraph& g, const Tpetra_Map& col_map,
const Int& lr, const Int& I, const Int& J, const Int& K, Int offdiag_idxs[2]) {
offdiag_idxs[0] = offdiag_idxs[1] = -1;
const auto& rowptr = g.getLocalGraph().row_map;
const auto& colidx = g.getLocalGraph().entries;
GO rid_offdiags[2];
rid_offdiags[0] = rid_offdiags[1] = Teuchos::OrdinalTraits<GO>::invalid();
if (K > 0) rid_offdiags[0] = sb.ijk2id(I, J, K-1);
if (K+1 < sb.nk) rid_offdiags[1] = sb.ijk2id(I, J, K+1);
for (size_t j = rowptr(lr); j < rowptr(lr+1); ++j) {
const auto cid = col_map.getGlobalElement(colidx(j));
for (Int k = 0; k < 2; ++k)
if (cid == rid_offdiags[k]) {
offdiag_idxs[k] = j - rowptr(lr);
break;
}
}
if (K > 0) TEUCHOS_ASSERT(offdiag_idxs[0] != -1);
if (K+1 < sb.nk) TEUCHOS_ASSERT(offdiag_idxs[1] != -1);
}
template <typename View> static void
zero_offdiag_idxs (const Int offdiag_idxs[2], View& blockrow) {
const Int bs = blockrow.extent(2);
for (Int k = 0; k < 2; ++k) {
if (offdiag_idxs[k] == -1) continue;
for (Int i = 0; i < bs; ++i)
for (Int j = 0; j < bs; ++j)
blockrow(offdiag_idxs[k],i,j) = 0;
}
}
// Make a BlockCrsMatrix with interesting, deterministic entries independent of
// parallel decomposition. If ! tridiag_is_identity, then the matrix is row and
// column diagonally dominant.
static Teuchos::RCP<Tpetra_BlockCrsMatrix>
make_bcrs_matrix (const StructuredBlock& sb, const Teuchos::RCP<const Tpetra_CrsGraph>& gr,
const Int bs, const bool tridiag_is_identity = false, const bool block_diag = false) {
auto mr = Teuchos::rcp(new Tpetra_BlockCrsMatrix(*gr, bs));
// Raw pointers for threading.
auto m = mr.get();
auto g = gr.get();
const auto& rowptr = g->getLocalGraph().row_map;
const auto& colidx = g->getLocalGraph().entries;
const LO nr = rowptr.extent_int(0) - 1;
const auto row_map = g->getRowMap().get();
const auto col_map = g->getColMap().get();
Int max_bpr = 0; {
Int max_bpr_lcl = 0;
for (Int r = 0; r < nr; ++r)
max_bpr_lcl = std::max<Int>(max_bpr_lcl, rowptr(r+1) - rowptr(r));
Teuchos::reduceAll(*row_map->getComm(), Teuchos::REDUCE_MAX, 1, &max_bpr_lcl, &max_bpr);
}
const Int nthreads =
#ifdef KOKKOS_ENABLE_OPENMP
omp_get_max_threads()
#else
1
#endif
;
struct ThreadData {
Kokkos::View<typename Kokkos::Details::ArithTraits<Scalar>::val_type***, Kokkos::HostSpace> blockrow;
std::vector<GO> cids;
ThreadData (const Int max_bpr, const Int bs)
: blockrow("blockrow", max_bpr, bs, bs), cids(max_bpr)
{}
};
std::vector<ThreadData> tds;
for (Int tid = 0; tid < nthreads; ++tid)
tds.push_back(ThreadData(max_bpr, bs));
#ifdef KOKKOS_ENABLE_OPENMP
# pragma omp parallel for
#endif
for (Int lr = 0; lr < nr; ++lr) {
const Int tid =
#ifdef KOKKOS_ENABLE_OPENMP
omp_get_thread_num()
#else
0
#endif
;
auto& blockrow = tds[tid].blockrow;
auto& cids = tds[tid].cids;
const auto rid = row_map->getGlobalElement(lr);
Int I, J, K;
sb.id2ijk(rid, I, J, K);
const auto n_blocks = rowptr(lr+1) - rowptr(lr);
Int diag_idx = -1;
const size_t j0 = rowptr(lr);
for (size_t j = j0; j < rowptr(lr+1); ++j) {
const auto cid = col_map->getGlobalElement(colidx(j));
const auto os = j - j0;
if (cid == rid) diag_idx = os;
cids[os] = cid;
}
TEUCHOS_ASSERT(diag_idx != -1);
Int offdiag_idxs[2];
if (tridiag_is_identity || block_diag)
get_offdiag_idxs(sb, *g, *col_map, lr, I, J, K, offdiag_idxs);
else
offdiag_idxs[0] = offdiag_idxs[1] = -1;
fill_block_row(I, J, K, cids.data(), n_blocks, diag_idx, max_bpr, blockrow);
if (tridiag_is_identity)
for (Int i = 0; i < bs; ++i)
for (Int j = 0; j < bs; ++j)
blockrow(diag_idx,i,j) = i == j ? 1 : 0;
if (tridiag_is_identity || block_diag)
zero_offdiag_idxs(offdiag_idxs, blockrow);
for (size_t j = rowptr(lr); j < rowptr(lr+1); ++j) {
auto block = m->getLocalBlock(lr, colidx(j));
const auto b = j - rowptr(lr);
for (Int bi = 0; bi < bs; ++bi)
for (Int bj = 0; bj < bs; ++bj)
block(bi,bj) = blockrow(b,bi,bj);
}
}
if ( ! (tridiag_is_identity || (block_diag && bs == 1)))
make_row_and_col_diag_dominant(*m);
return mr;
}
// Make a multivector with interesting, deterministic entries independent of
// parallel decomposition.
template <typename T> static void make_entry (const GO& gid, const LO& col, T& e) {
e = std::sin(0.1*(1 + gid + col));
}
#ifdef HAVE_TEUCHOS_COMPLEX
template <typename T> static void make_entry (const GO& gid, const LO& col, std::complex<T>& e) {
T re, im;
make_entry(gid, col , re);
make_entry(gid, col+1, im);
e = std::complex<T>(re, im);
}
template <typename T> static void make_entry (const GO& gid, const LO& col, Kokkos::complex<T>& e) {
std::complex<T> se;
make_entry(gid, col, se);
e = se;
}
#endif
static Teuchos::RCP<Tpetra_MultiVector> make_multivector (
const StructuredBlock& sb, const Teuchos::RCP<const Tpetra_BlockCrsMatrix>& m,
const Int bs, const Int nvec)
{
auto mv = Teuchos::rcp(new Tpetra_MultiVector(m->getDomainMap(), nvec));
const auto v = mv->template getLocalView<typename Tpetra_MultiVector::dual_view_type::t_host>();
const auto map = mv->getMap();
for (GO lid = 0; lid < v.extent_int(0); ++lid)
for (LO col = 0; col < v.extent_int(1); ++col) {
const auto gid = map->getGlobalElement(lid);
make_entry(gid, col, v(lid,col));
}
return mv;
}
static Magnitude reldif (const Tpetra_MultiVector& x, const Tpetra_MultiVector& y) {
const Int nvec = x.getNumVectors();
Tpetra_MultiVector xmy(x, Teuchos::Copy);
xmy.update(-1, y, 1);
Teuchos::Array<Magnitude> num_norm2(nvec), den_norm2(nvec);
xmy.norm2(num_norm2());
x.norm2(den_norm2());
Magnitude num = 0, den = 0;
for (Int i = 0; i < nvec; ++i) {
num += num_norm2[i]*num_norm2[i];
den += den_norm2[i]*den_norm2[i];
}
const Magnitude rd = std::sqrt(num/den);
return (std::isnan(rd) || std::isinf(rd)) ? 1 : rd;
}
// Check the manufactured test matrix for parallel consistency by comparing a
// serial MVP with a parallel one.
static Int
test_bcrs_matrix (const Teuchos::RCP<const Teuchos::Comm<int> >& pcomm,
const StructuredBlock& sb, const StructuredBlockPart& psbp,
const Int bs, const bool tridiags_only = false,
const bool different_maps = false) {
// Construct matrix and perform MVP. Return the range map if requested.
auto mvp = [&] (const Teuchos::RCP<const Teuchos::Comm<int> >& comm,
const StructuredBlockPart& sbp,
const bool want_rng_map, Teuchos::RCP<const Tpetra_Map>& rng_map) {
auto g = make_crs_graph(comm, sb, sbp, tridiags_only, different_maps);
auto m = make_bcrs_matrix(sb, g, bs);
if (want_rng_map) rng_map = m->getRangeMap();
const Int nvec = 3;
auto x = make_multivector(sb, m, bs, nvec);
auto y = Teuchos::rcp(new Tpetra_MultiVector(m->getRangeMap(), nvec));
m->apply(*x, *y);
return y;
};
// Parallel MVP.
Teuchos::RCP<const Tpetra_Map> srl_rng_map;
auto py = mvp(pcomm, psbp, false, srl_rng_map);
// Serial MVP, and get the range map.
Teuchos::RCP<Tpetra_MultiVector> sy;
if (pcomm->getRank() == 0) {
const auto scomm = Teuchos::rcp(new Teuchos::SerialComm<int>());
const auto ssbp = make_StructuredBlockPart(sb, 1, 1, 0);
sy = mvp(scomm, ssbp, true, srl_rng_map);
}
// Bring the parallel MVP's solution to one processor, using the serial range
// map's global index list to set up the target.
Teuchos::RCP<Tpetra_MultiVector> y0; {
const GO idx_base = 0;
const GO num_gbl_cell = sb.ni*sb.nj*sb.nk, N = bs*num_gbl_cell;
std::vector<GO> my_gids;
if (pcomm->getRank() == 0) {
// Only the root rank gets any GIDs, of course.
my_gids.resize(N);
const auto& sr_gids = srl_rng_map->getMyGlobalIndices();
for (GO i = 0; i < N; ++i) my_gids[i] = sr_gids[i];
}
const auto allon0 = Teuchos::rcp(new Tpetra_Map(N, my_gids.data(), my_gids.size(),
idx_base, pcomm));
y0 = Teuchos::rcp(new Tpetra_MultiVector(allon0, py->getNumVectors()));
Tpetra_Export e(py->getMap(), allon0);
y0->doExport(*py, e, Tpetra::REPLACE);
}
// Check the difference.
Magnitude relerr = 0; {
if (pcomm->getRank() == 0)
relerr = reldif(*sy, *y0);
Magnitude grelerr = 0;
Teuchos::reduceAll(*pcomm, Teuchos::REDUCE_MAX, 1, &relerr, &grelerr);
relerr = grelerr;
}
return relerr > 1e1*std::numeric_limits<Magnitude>::epsilon();
}
}; // struct BlockCrsMatrixMaker
} // namespace tif_utest
#endif // IFPACK2_UNITTEST_BLOCKCRS_UTIL_HPP
|