File: Ifpack2_UnitTestChebyshev2.cpp

package info (click to toggle)
trilinos 12.18.1-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 825,604 kB
  • sloc: cpp: 3,352,065; ansic: 432,926; fortran: 169,495; xml: 61,903; python: 40,836; sh: 32,697; makefile: 26,612; javascript: 8,535; perl: 7,136; f90: 6,372; csh: 4,183; objc: 2,620; lex: 1,469; lisp: 810; yacc: 497; awk: 364; ml: 281; php: 145
file content (780 lines) | stat: -rw-r--r-- 29,912 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
/*
//@HEADER
// ***********************************************************************
//
//       Ifpack2: Templated Object-Oriented Algebraic Preconditioner Package
//                 Copyright (2009) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
//@HEADER
*/


/*! \file Ifpack2_UnitTestChebyshev2.cpp
\brief A convergence test for Ifpack2::Chebyshev.
\author Mark Hoemmen

This test compares Ifpack2's implementation of Chebyshev iteration
(which as of 25 Jan 2013 is a direct imitation of Ifpack's
implementation) against the following implementations:
1. A textbook version of the algorithm
2. A textbook implementation of CG

All three implementations use left diagonal scaling.  "Textbook" means
"Templates for the Solution of Linear Systems," 2nd edition.  We
include CG just to give us a rough measure of how fast the methods
"should" converge.

The test exercises all three algorithms with a 1-D Poisson equation.
We know the eigenvalues of the matrix exactly as a function of its
dimensions (see Chapter 6 of "Applied Numerical Linear Algebra," James
Demmel, SIAM), so we can give perfect eigenvalue bounds.  We also
experiment with variations of max and min eigenvalue estimates and the
eigenvalue ratio parameter.

This test has the following command-line arguments:
- numIters: The number of iterations of Chebyshev or CG.
- localNumRows: The number of rows of the matrix on each process.
- numEigIters: The number of iterations of eigenvalue analysis (the
  power method) to find the max eigenvalue of the matrix.

The textbook implementation of Chebyshev converges faster if the
eigenvalue bounds are good, but it is much more sensitive than
Ifpack2::Chebyshev to an incorrect upper bound on the eigenvalues.
This gives me confidence that Ifpack2's version is correct.

There is also dead code for imitating ML's Chebyshev implementation
(ML_Cheby(), in packages/ml/src/Smoother/ml_smoother.c) in
Ifpack2::Details::Chebyshev.  I couldn't get it to converge, and
didn't want to waste time.  ML uses Ifpack::Chebyshev for the
top-level smoother if you give it an Epetra matrix, so Ifpack's
implementation (which Ifpack2 imitates) been tested in the field.
*/

#include <Ifpack2_ConfigDefs.hpp>
#include <Ifpack2_Chebyshev.hpp>
#include <Ifpack2_UnitTestHelpers.hpp>
#include <Teuchos_DefaultComm.hpp>
#include <Teuchos_oblackholestream.hpp>
#include <Teuchos_ScalarTraits.hpp>
#include <Teuchos_UnitTestHarness.hpp>
#include <Teuchos_UnitTestRepository.hpp>

// mfh 24 Jan 2013: Hack to make the linker stop complaining that it
// can't find the Ifpack2::Details::Chebyshev methods.
#ifdef HAVE_IFPACK2_EXPLICIT_INSTANTIATION
#include "Ifpack2_Details_Chebyshev_def.hpp"
#endif // HAVE_IFPACK2_EXPLICIT_INSTANTIATION

namespace {

/// \class CG
/// \brief Method of conjugate gradients, with left-scaling preconditioning.
/// \tparam ScalarType The type of entries in the matrix and vectors.
/// \tparam MV Specialization of Tpetra::MultiVector.
/// \tparam MAT Corresponding specialization of Tpetra::CrsMatrix.
///
/// This class requires that the matrix A be symmetric
/// (resp. Hermitian) positive definite.
template<class ScalarType, class MV, class MAT>
class CG {
public:
  typedef ScalarType ST;
  typedef Teuchos::ScalarTraits<ScalarType> STS;
  typedef typename STS::magnitudeType MT;
  typedef Tpetra::Vector<typename MV::scalar_type,
                         typename MV::local_ordinal_type,
                         typename MV::global_ordinal_type,
                         typename MV::node_type> V;
  /// Constructor.
  ///
  /// \param A [in] The matrix A in the linear system to solve.
  ///   A must be symmetric (resp. Hermitian) positive definite.
  CG (Teuchos::RCP<const MAT> A) :
    A_ (A),
    D_ (getDiagonal (*A)),
    numIters_ (1)
  {}

  /// Constructor with parameters.
  ///
  /// \param A [in] The matrix A in the linear system to solve.
  ///   A must be symmetric (resp. Hermitian) positive definite.
  /// \param params [in/out] On input: the parameters.  On output:
  ///   filled with the current parameter settings.
  CG (Teuchos::RCP<const MAT> A, Teuchos::ParameterList& params) :
    A_ (A),
    D_ (getDiagonal (*A)),
    numIters_ (1)
  {
    setParameters (params);
  }

  /// \brief Set (or reset) parameters.
  ///
  /// This method accepts the following parameters:
  /// - "relaxation: sweeps" (\c int): numIters, the number of iterations.
  ///
  /// \pre numIters >= 0
  void setParameters (Teuchos::ParameterList& plist) {
    int numIters = numIters_;
    if (plist.isParameter ("chebyshev: degree")) {
      numIters = plist.get<int> ("chebyshev: degree");
    } else if (plist.isParameter ("CG: iterations")) {
      numIters = plist.get<int> ("CG: iterations");
    } else {
      numIters = plist.get ("relaxation: sweeps", numIters);
    }
    numIters_ = numIters;
  }

  /// Solve Ax=b for x with Chebyshev iteration, using diagonal left preconditioning.
  ///
  /// \param b [in] Right-hand side(s) in the linear system to solve.
  /// \param x [in] Initial guess(es) for the linear system to solve.
  ///
  /// \return Max (over all columns) absolute residual 2-norm after iterating.
  MT apply (const MV& b, MV& x) {
    return leftScaledCG (*A_, b, x, numIters_, *D_);
  }

private:
  Teuchos::RCP<const MAT> A_;
  Teuchos::RCP<const V> D_;
  int numIters_;

  //! r = b - A * x
  static void
  computeResidual (MV& r, const MV& b, const MAT& A, const MV& x,
                   const Teuchos::ETransp mode = Teuchos::NO_TRANS)
  {
    r = b;
    A.apply (x, r, mode, -STS::one(), STS::one());
  }

  //! z = D_inv * r, = D \ r.
  static void solve (MV& z, const V& D_inv, const MV& r) {
    z.elementWiseMultiply (STS::one(), D_inv, r, STS::zero());
  }

  //! Get a copy of the diagonal of the matrix, as a row Map vector.
  static Teuchos::RCP<V> getDiagonal (const MAT& A) {
    Teuchos::RCP<V> D (new V (A.getGraph ()->getRowMap ()));
    A.getLocalDiagCopy (*D);

    typedef typename V::scalar_type scalar_type;
    typedef typename V::mag_type mag_type;
    typedef Teuchos::ScalarTraits<scalar_type> STS;

    const scalar_type ONE = STS::one ();
    const mag_type min_val_abs = STS::magnitude (STS::eps ());
    Teuchos::ArrayRCP<scalar_type> D_0 = D->getDataNonConst (0);
    scalar_type* const D_0_raw = D_0.getRawPtr ();
    const size_t lclNumRows = D->getLocalLength ();

    for (size_t i = 0; i < lclNumRows; ++i) {
      const scalar_type D_0i = D_0_raw[i];
      if (STS::magnitude (D_0i) < min_val_abs) {
        D_0_raw[i] = STS::eps ();
      } else {
        D_0_raw[i] = ONE / D_0i;
      }
    }

    return D;
  }

  /// Solve Ax=b for x with CG, using diagonal left preconditioning.
  ///
  /// \pre A must be real-valued and symmetric positive definite.
  /// \pre iterNum >= 0.
  /// \pre All entries of D_inv are positive.
  ///
  /// \param A [in] The matrix A in the linear system to solve.
  /// \param b [in] Right-hand side(s) in the linear system to solve.
  /// \param x [in] Initial guess(es) for the linear system to solve.
  /// \param numIters [in] Number of iterations.
  /// \param D_inv [in] Vector of diagonal entries of A.  It must have
  ///   the same distribution as b.
  ///
  /// \return Max (over all columns) absolute residual 2-norm after iterating.
  static MT
  leftScaledCG (const MAT& A,
                const MV& B,
                MV& X,
                const int numIters,
                const V& D_inv)
  {
    Teuchos::Array<MT> norms (B.getNumVectors ());
    for (size_t j = 0; j < B.getNumVectors (); ++j) {
      Teuchos::RCP<const V> b_j = B.getVector (j);
      Teuchos::RCP<V> x_j = X.getVectorNonConst (j);
      norms[j] = oneVecLeftScaledCG (A, *b_j, *x_j, numIters, D_inv);
    }
    return *std::max_element (norms.begin (), norms.end ());
  }

  /// Solve Ax=b for x with CG, using diagonal left preconditioning.
  ///
  /// \pre A must be real-valued and symmetric positive definite.
  /// \pre iterNum >= 0.
  /// \pre All entries of D_inv are positive.
  ///
  /// \param A [in] The matrix A in the linear system to solve.
  /// \param b [in] Right-hand side(s) in the linear system to solve.
  /// \param x [in] Initial guess(es) for the linear system to solve.
  /// \param numIters [in] Number of iterations.
  /// \param D_inv [in] Vector of diagonal entries of A.  It must have
  ///   the same distribution as b.
  ///
  /// \return Max (over all columns) absolute residual 2-norm after iterating.
  static MT
  oneVecLeftScaledCG (const MAT& A,
                      const V& b,
                      V& x,
                      const int numIters,
                      const V& D_inv)
  {
    const ST one = STS::one ();
    V r (b.getMap ());
    V p (b.getMap ());
    V q (b.getMap ());
    V z (b.getMap ());

    ST alpha, beta, rho;
    // We don't actually need to assign to rho_prev here,
    // but doing so silences a GCC 4.4.6 compiler warning.
    ST rho_prev = STS::zero ();
    computeResidual (r, b, A, x); // r = b - A*x
    for (int i = 0; i < numIters; ++i) {
      solve (z, D_inv, r); // z = D_inv * r, that is, D \ r.
      rho = r.dot (z); // rho = r^T z; not sure if the order is right for complex arithmetic.
      if (i == 0) {
        p = z;
      } else {
        beta = rho / rho_prev;
        p.update (one, z, beta); // p = z + beta*p
      }
      A.apply (p, q);
      const ST p_dot_q = p.dot (q); // p_dot_q = p^T q; not sure if the order is right for complex arithmetic.
      alpha = rho / p_dot_q;
      x.update (+alpha, p, one); // x = x + alpha*p
      r.update (-alpha, q, one); // r = r - alpha*q
      rho_prev = rho;
    }

    const bool computeResidualNorm = true;
    if (computeResidualNorm) {
      computeResidual (r, b, A, x);
      return r.norm2 ();
    }
  }
};

//////////////////////////////////////////////////////////////////////
// Command-line arguments
//////////////////////////////////////////////////////////////////////

// They have long names so I don't confuse them with the shorter-named
// actual options in the body of the test.
int numberOfIterations = 50;
int numberOfEigenanalysisIterations = 15;
int localNumberOfRows = 10000;

} // namespace (anonymous)


TEUCHOS_STATIC_SETUP()
{
  Teuchos::CommandLineProcessor &clp = Teuchos::UnitTestRepository::getCLP ();
  clp.setOption ("numIters", &numberOfIterations,
                 "Number of Chebyshev iterations");
  clp.setOption ("numEigIters", &numberOfEigenanalysisIterations,
                 "Number of iterations of eigenvalue analysis (e.g., power method)");
  clp.setOption ("localNumRows", &localNumberOfRows,
                 "Number of rows per process in the sparse matrix.");
}


TEUCHOS_UNIT_TEST(Ifpack2Chebyshev, Convergence)
{
  // We are now in a class method declared by the above macro, and
  // that method has these input arguments:
  // Teuchos::FancyOStream& out, bool& success

  using Tpetra::global_size_t;
  using Teuchos::Array;
  using Teuchos::ArrayView;
  using Teuchos::as;
  using Teuchos::Comm;
  using Teuchos::ParameterList;
  using Teuchos::RCP;
  using Teuchos::rcp;
  using Teuchos::tuple;
  using std::cout;
  using std::endl;

  // Typedefs for basic Tpetra template parameters.
  typedef Tpetra::MultiVector<>::scalar_type ST;
  typedef Tpetra::MultiVector<>::local_ordinal_type LO;
  typedef Tpetra::MultiVector<>::global_ordinal_type GO;
  typedef Tpetra::MultiVector<>::node_type NT;

  // Convenience typedefs.
  typedef Tpetra::Map<LO, GO, NT> map_type;
  typedef Tpetra::CrsMatrix<ST, LO, GO, NT> crs_matrix_type;
  typedef Tpetra::RowMatrix<ST, LO, GO, NT> row_matrix_type;
  typedef Tpetra::MultiVector<ST, LO, GO, NT> MV;
  typedef Tpetra::Vector<ST, LO, GO, NT> V;
  typedef Ifpack2::Chebyshev<row_matrix_type> prec_type;
  typedef Teuchos::ScalarTraits<ST> STS;
  typedef STS::magnitudeType MT;

  const ST zero = STS::zero ();
  const ST one = STS::one ();
  const ST two = one + one;

  // Prepare arguments for creating the Map.
  RCP<const Comm<int> > comm = Teuchos::DefaultComm<int>::getComm ();
  const size_t localNumRows = as<size_t> (localNumberOfRows);
  const global_size_t globalNumRows = localNumRows * comm->getSize ();
  const GO indexBase = 0;
  const Tpetra::LocalGlobal lg = Tpetra::GloballyDistributed;

  // Create the row Map of the matrix, and the matrix's other Maps.
  RCP<const map_type> rowMap (new map_type (globalNumRows, indexBase, comm, lg));
  RCP<const map_type> rangeMap = rowMap;
  RCP<const map_type> domainMap = rowMap;

  // Create the matrix, with static profile.
  RCP<crs_matrix_type> A (new crs_matrix_type (rowMap, 3, Tpetra::StaticProfile));

  // Fill the matrix.
  Array<GO> cols (3);
  Array<ST> vals (3);
  for (GO globalRow = rowMap->getMinGlobalIndex ();
       globalRow <= rowMap->getMaxGlobalIndex (); ++globalRow) {
    size_t numEntries = 3;
    if (globalRow == rowMap->getMinAllGlobalIndex ()) {
      numEntries = 2;
      cols[0] = globalRow;
      cols[1] = globalRow+1;
      vals[0] = two;
      vals[1] = -one;
    }
    else if (globalRow == rowMap->getMaxAllGlobalIndex ()) {
      numEntries = 2;
      cols[0] = globalRow-1;
      cols[1] = globalRow;
      vals[0] = -one;
      vals[1] = two;
    }
    else {
      numEntries = 3;
      cols[0] = globalRow-1;
      cols[1] = globalRow;
      cols[2] = globalRow+1;
      vals[0] = -one;
      vals[1] = two;
      vals[2] = -one;
    }
    ArrayView<const GO> colsView = cols.view (0, numEntries);
    ArrayView<const ST> valsView = vals.view (0, numEntries);
    A->insertGlobalValues (globalRow, colsView, valsView);
  }
  A->fillComplete (domainMap, rangeMap);

  // See James Demmel, "Applied Numerical Linear Algebra," SIAM,
  // pp. 267-8.  The eigenvalue approximations apply to the N x N
  // matrix with typical row (-1, 2, -1), representing the
  // discretization of the 1-D Poisson equation with Dirichlet
  // boundary conditions.
  const ST pi = acos (-1.0);
  const ST N = as<ST> (globalNumRows);
  const ST lambdaMax = two * (one - cos ((pi*N) / (N+one)));
  const ST lambdaMin = (pi / N) * (pi / N);
  ST eigRatio = lambdaMax / lambdaMin;
  const int numIters = numberOfIterations;
  int numEigIters = numberOfEigenanalysisIterations;

  // Set up the linear system to solve.
  V x_exact (domainMap), x (domainMap), b (rangeMap);
  x_exact.randomize ();
  A->apply (x_exact, b);
  x.putScalar (zero);

  V r (rangeMap); // for storing residual vector(s).
  Array<MT> norms (b.getNumVectors ());

  // Compute max initial absolute residual 2-norm.
  r = b;
  A->apply (x, r, Teuchos::NO_TRANS, -one, one);
  r.norm2 (norms ());
  const MT maxInitResNorm = *std::max_element (norms.begin (), norms.end ());

  // Make an output stream that only prints on Proc 0.
  // The usual 'out' stream in unit tests only prints if the test failed.
  Teuchos::oblackholestream blackHole;
  std::ostream& os2 = (comm->getRank () == 0) ? cout : blackHole;

  os2 << std::scientific;
  os2 << endl
      << "numIters: " << numIters << endl
      << "localNumRows: " << localNumRows << endl
      << "globalNumRows: " << globalNumRows << endl
      << "lambdaMin: " << lambdaMin << endl
      << "lambdaMax: " << lambdaMax << endl
      << "eigRatio: " << eigRatio << endl
      << "Initial residual norm: " << maxInitResNorm << endl
      << endl;

  Teuchos::ParameterList params;
  // Set parameters for the various Chebyshev implementations.  The
  // above Chebyshev class understands many of the same parameters as
  // Ifpack2, Ifpack, and ML.  For this first pass, we only set the
  // max eigenvalue.  Below, we'll experiment with also setting the
  // min eigenvalue and the min / max eigenvalue ratio.
  params.set ("chebyshev: eigenvalue max iterations", numEigIters);
  params.set ("chebyshev: degree", numIters);
  params.set ("chebyshev: max eigenvalue", lambdaMax);

  // Create the operators: Ifpack2, textbook Chebyshev, and custom CG.
  prec_type ifpack2Cheby (A);
  Ifpack2::Details::Chebyshev<ST, MV> myCheby (A);
  CG<ST, MV, crs_matrix_type> cg (A);

  // Residual 2-norms for comparison.
  MT maxResNormIfpack2, maxResNormTextbook, maxResNormCg;

  ////////////////////////////////////////////////////////////////////
  // Test 1: set lambdaMax exactly, use default values of eigRatio and
  // lambdaMin.  Run each version of Chebyshev and compare results.
  ////////////////////////////////////////////////////////////////////

  // Run Ifpack2's version of Chebyshev.
  ifpack2Cheby.setParameters (params);
  ifpack2Cheby.initialize ();
  ifpack2Cheby.compute ();
  ifpack2Cheby.apply (b, x);
  r = b;
  A->apply (x, r, Teuchos::NO_TRANS, -one, one);
  r.norm2 (norms ());
  maxResNormIfpack2 = *std::max_element (norms.begin (), norms.end ());

  // Run our custom version of Chebyshev.
  x.putScalar (zero); // Reset the initial guess(es).
  params.set ("chebyshev: textbook algorithm", true);
  myCheby.setParameters (params);
  myCheby.compute ();
  (void) myCheby.apply (b, x);
  r = b;
  A->apply (x, r, Teuchos::NO_TRANS, -one, one);
  r.norm2 (norms ());
  maxResNormTextbook = *std::max_element (norms.begin (), norms.end ());

  // Run CG, just to compare.
  x.putScalar (zero); // Reset the initial guess(es).
  cg.setParameters (params);
  maxResNormCg = cg.apply (b, x);

  os2 << "Results with lambdaMax = " << lambdaMax
      << ", default lambdaMin and eigRatio:" << endl
      << "- Ifpack2::Chebyshev:         " << maxResNormIfpack2 / maxInitResNorm << endl
      << "- Textbook Chebyshev:         " << maxResNormTextbook / maxInitResNorm << endl
      << "- CG:                         " << maxResNormCg / maxInitResNorm << endl;

  ////////////////////////////////////////////////////////////////////
  // Test 2: set lambdaMax and lambdaMin exactly, and set eigRatio =
  // lambdaMax / lambdaMin.
  ////////////////////////////////////////////////////////////////////

  // Reset parameters.
  params.set ("chebyshev: textbook algorithm", false);
  params.set ("chebyshev: min eigenvalue", lambdaMin);
  params.set ("chebyshev: ratio eigenvalue", eigRatio);

  // Run Ifpack2's version of Chebyshev.
  ifpack2Cheby.setParameters (params);
  ifpack2Cheby.initialize ();
  ifpack2Cheby.compute ();
  ifpack2Cheby.apply (b, x);
  r = b;
  A->apply (x, r, Teuchos::NO_TRANS, -one, one);
  r.norm2 (norms ());
  maxResNormIfpack2 = *std::max_element (norms.begin (), norms.end ());

  // Run our custom version of Chebyshev.
  x.putScalar (zero); // Reset the initial guess(es).
  params.set ("chebyshev: textbook algorithm", true);
  myCheby.setParameters (params);
  myCheby.compute ();
  (void) myCheby.apply (b, x);
  r = b;
  A->apply (x, r, Teuchos::NO_TRANS, -one, one);
  r.norm2 (norms ());
  maxResNormTextbook = *std::max_element (norms.begin (), norms.end ());

  // Run CG, just to compare.
  x.putScalar (zero); // Reset the initial guess(es).
  cg.setParameters (params);
  maxResNormCg = cg.apply (b, x);

  os2 << "Results with lambdaMax = " << lambdaMax
      << ", lambdaMin = " << lambdaMin << ", eigRatio = " << eigRatio << endl
      << "- Ifpack2::Chebyshev:         " << maxResNormIfpack2 / maxInitResNorm << endl
      << "- Textbook Chebyshev:         " << maxResNormTextbook / maxInitResNorm << endl
      << "- CG:                         " << maxResNormCg / maxInitResNorm << endl;

  // Reset parameters.
  params.set ("chebyshev: textbook algorithm", false);
  // ParameterList is NOT a delta.  That is, if we remove these
  // parameters from the list, setParameters() will use default
  // values, rather than letting the current settings remain.
  params.remove ("chebyshev: min eigenvalue", false);
  params.remove ("chebyshev: ratio eigenvalue", false);

  ////////////////////////////////////////////////////////////////////
  // Test 3: set lambdaMax exactly, and set eigRatio = 20 (ML's
  // default).
  ////////////////////////////////////////////////////////////////////

  // Set new parameter values.
  eigRatio = Teuchos::as<ST> (20);
  params.set ("chebyshev: ratio eigenvalue", eigRatio);

  //
  // Run each version of Chebyshev and compare their results.
  //
  // Run Ifpack2's version of Chebyshev.
  ifpack2Cheby.setParameters (params);
  ifpack2Cheby.initialize ();
  ifpack2Cheby.compute ();
  ifpack2Cheby.apply (b, x);
  r = b;
  A->apply (x, r, Teuchos::NO_TRANS, -one, one);
  r.norm2 (norms ());
  maxResNormIfpack2 = *std::max_element (norms.begin (), norms.end ());

  // Run our custom version of Chebyshev.
  x.putScalar (zero); // Reset the initial guess(es).
  params.set ("chebyshev: textbook algorithm", true);
  myCheby.setParameters (params);
  myCheby.compute ();
  (void) myCheby.apply (b, x);
  r = b;
  A->apply (x, r, Teuchos::NO_TRANS, -one, one);
  r.norm2 (norms ());
  maxResNormTextbook = *std::max_element (norms.begin (), norms.end ());

  // Run CG, just to compare.
  x.putScalar (zero); // Reset the initial guess(es).
  cg.setParameters (params);
  maxResNormCg = cg.apply (b, x);

  os2 << "Results with lambdaMax = " << lambdaMax
      << ", default lambdaMin, eigRatio = " << eigRatio << endl
      << "- Ifpack2::Chebyshev:         " << maxResNormIfpack2 / maxInitResNorm << endl
      << "- Textbook Chebyshev:         " << maxResNormTextbook / maxInitResNorm << endl
      << "- CG:                         " << maxResNormCg / maxInitResNorm << endl;

  // Reset parameters.
  params.set ("chebyshev: textbook algorithm", false);

  ////////////////////////////////////////////////////////////////////
  // Test 4: set lambdaMax exactly, and set eigRatio = 30 (Ifpack's
  // default).
  ////////////////////////////////////////////////////////////////////
  eigRatio = Teuchos::as<ST> (30);
  params.set ("chebyshev: ratio eigenvalue", eigRatio);

  //
  // Run each version of Chebyshev and compare their results.
  //
  // Run Ifpack2's version of Chebyshev.
  ifpack2Cheby.setParameters (params);
  ifpack2Cheby.initialize ();
  ifpack2Cheby.compute ();
  ifpack2Cheby.apply (b, x);
  r = b;
  A->apply (x, r, Teuchos::NO_TRANS, -one, one);
  r.norm2 (norms ());
  maxResNormIfpack2 = *std::max_element (norms.begin (), norms.end ());

  // Run our custom version of Chebyshev.
  x.putScalar (zero); // Reset the initial guess(es).
  params.set ("chebyshev: textbook algorithm", true);
  myCheby.setParameters (params);
  myCheby.compute ();
  (void) myCheby.apply (b, x);
  r = b;
  A->apply (x, r, Teuchos::NO_TRANS, -one, one);
  r.norm2 (norms ());
  maxResNormTextbook = *std::max_element (norms.begin (), norms.end ());

  // Run CG, just to compare.
  x.putScalar (zero); // Reset the initial guess(es).
  cg.setParameters (params);
  maxResNormCg = cg.apply (b, x);

  os2 << "Results with lambdaMax = " << lambdaMax
      << ", default lambdaMin, eigRatio = " << eigRatio << endl
      << "- Ifpack2::Chebyshev:         " << maxResNormIfpack2 / maxInitResNorm << endl
      << "- Textbook Chebyshev:         " << maxResNormTextbook / maxInitResNorm << endl
      << "- CG:                         " << maxResNormCg / maxInitResNorm << endl;

  // Reset parameters to their original values.
  params.set ("chebyshev: textbook algorithm", false);
  params.remove ("chebyshev: ratio eigenvalue", false);
  eigRatio = lambdaMax / lambdaMin;

  ////////////////////////////////////////////////////////////////////
  // Test 5: Clear lambdaMax, lambdaMin, and eigRatio.  Let the
  // smoother do eigenanalysis to estimate lambdaMax.
  ////////////////////////////////////////////////////////////////////

  params.remove ("chebyshev: min eigenvalue", false);
  params.remove ("chebyshev: max eigenvalue", false);
  params.remove ("chebyshev: ratio eigenvalue", false);

  // Run Ifpack2's version of Chebyshev.
  ifpack2Cheby.setParameters (params);
  ifpack2Cheby.initialize ();
  ifpack2Cheby.compute ();
  ifpack2Cheby.apply (b, x);
  r = b;
  A->apply (x, r, Teuchos::NO_TRANS, -one, one);
  r.norm2 (norms ());
  maxResNormIfpack2 = *std::max_element (norms.begin (), norms.end ());

  // Run our custom version of Chebyshev.
  x.putScalar (zero); // Reset the initial guess(es).
  params.set ("chebyshev: textbook algorithm", true);
  myCheby.setParameters (params);
  myCheby.compute ();
  (void) myCheby.apply (b, x);
  r = b;
  A->apply (x, r, Teuchos::NO_TRANS, -one, one);
  r.norm2 (norms ());
  maxResNormTextbook = *std::max_element (norms.begin (), norms.end ());

  // Run CG, just to compare.
  x.putScalar (zero); // Reset the initial guess(es).
  cg.setParameters (params);
  maxResNormCg = cg.apply (b, x);

  os2 << "Results with default lambdaMax, lambdaMin, and eigRatio, "
    "with numEigIters = " << numEigIters << ":" << endl
      << "- Ifpack2::Chebyshev:         " << maxResNormIfpack2 / maxInitResNorm << endl
      << "- Textbook Chebyshev:         " << maxResNormTextbook / maxInitResNorm << endl
      << "- CG:                         " << maxResNormCg / maxInitResNorm << endl;

  // Print the computed max and min eigenvalues, and other details.
  os2 << endl;
  myCheby.print (os2);

  // Reset parameters.
  params.set ("chebyshev: textbook algorithm", false);

  ////////////////////////////////////////////////////////////////////
  // Test 6: Clear lambdaMax, lambdaMin, and eigRatio.  Let the
  // smoother do eigenanalysis to estimate lambdaMax, with more
  // iterations.
  ////////////////////////////////////////////////////////////////////

  params.remove ("chebyshev: min eigenvalue", false);
  params.remove ("chebyshev: max eigenvalue", false);
  params.remove ("chebyshev: ratio eigenvalue", false);
  numEigIters = 2 * numEigIters;
  params.set ("chebyshev: eigenvalue max iterations", numEigIters);

  // Run Ifpack2's version of Chebyshev.
  ifpack2Cheby.setParameters (params);
  ifpack2Cheby.initialize ();
  ifpack2Cheby.compute ();
  ifpack2Cheby.apply (b, x);
  r = b;
  A->apply (x, r, Teuchos::NO_TRANS, -one, one);
  r.norm2 (norms ());
  maxResNormIfpack2 = *std::max_element (norms.begin (), norms.end ());

  // Run our custom version of Chebyshev.
  x.putScalar (zero); // Reset the initial guess(es).
  params.set ("chebyshev: textbook algorithm", true);
  myCheby.setParameters (params);
  myCheby.compute ();
  (void) myCheby.apply (b, x);
  r = b;
  A->apply (x, r, Teuchos::NO_TRANS, -one, one);
  r.norm2 (norms ());
  maxResNormTextbook = *std::max_element (norms.begin (), norms.end ());

  // Run CG, just to compare.
  x.putScalar (zero); // Reset the initial guess(es).
  cg.setParameters (params);
  maxResNormCg = cg.apply (b, x);

  os2 << "Results with default lambdaMax, lambdaMin, and eigRatio, "
    "with numEigIters = " << numEigIters << ":" << endl
      << "- Ifpack2::Chebyshev:         " << maxResNormIfpack2 / maxInitResNorm << endl
      << "- Textbook Chebyshev:         " << maxResNormTextbook / maxInitResNorm << endl
      << "- CG:                         " << maxResNormCg / maxInitResNorm << endl;

  // For this case, if there are enough eigenanalysis iterations,
  // Ifpack2 should do quite a bit better than the textbook version of
  // the algorithm.  We'll be generous and say that it does "no worse"
  // than the textbook version.  We give "wiggle room" of four digits
  // for defining "no worse than."
  if (numEigIters >= 15) {
    const MT tol = Teuchos::as<MT> (1.0e-4);
    // Avoid division by zero when computing relative accuracy.
    const MT relDiff = maxResNormTextbook == zero ?
      STS::magnitude (maxResNormIfpack2 - maxResNormTextbook) :
      STS::magnitude (maxResNormIfpack2 - maxResNormTextbook) / maxResNormTextbook;
    TEUCHOS_TEST_FOR_EXCEPTION(
      maxResNormIfpack2 > maxResNormTextbook && relDiff > tol,
      std::runtime_error,
      "After " << numIters << " iterations of Chebyshev, with lambdaMax = "
      << lambdaMax << " and default lambdaMin and eigRatio, Ifpack2::Chebyshev "
      "does quite a bit worse than the textbook version of the algorithm.  The "
      "former has a max relative residual norm of " << maxResNormIfpack2 << ", "
      "and the latter of " << maxResNormTextbook << ".");
  }

  // Print the computed max and min eigenvalues, and other details.
  os2 << endl;
  myCheby.print (os2);
}