File: Ifpack2_UnitTestContainer.cpp

package info (click to toggle)
trilinos 12.18.1-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 825,604 kB
  • sloc: cpp: 3,352,065; ansic: 432,926; fortran: 169,495; xml: 61,903; python: 40,836; sh: 32,697; makefile: 26,612; javascript: 8,535; perl: 7,136; f90: 6,372; csh: 4,183; objc: 2,620; lex: 1,469; lisp: 810; yacc: 497; awk: 364; ml: 281; php: 145
file content (518 lines) | stat: -rw-r--r-- 19,562 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
/*
//@HEADER
// ***********************************************************************
//
//       Ifpack2: Templated Object-Oriented Algebraic Preconditioner Package
//                 Copyright (2009) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
//@HEADER
*/


/*! \file Ifpack2_UnitTestContainer.cpp

\brief Ifpack2 Unit test for the Container classes
*/


#include <Teuchos_ConfigDefs.hpp>
#include <Ifpack2_ConfigDefs.hpp>
#include <Teuchos_UnitTestHarness.hpp>
#include <Ifpack2_Version.hpp>
#include <iostream>

#include <Ifpack2_UnitTestHelpers.hpp>
#include <Ifpack2_DenseContainer.hpp>
#include <Ifpack2_SparseContainer.hpp>
#include <Ifpack2_BandedContainer.hpp>
#include <Ifpack2_ILUT.hpp>

// kgd 04 Sep 2013: Commented out <float,short,short> tests
// that were causing the test build to fail.


// mfh 03 Sep 2013: Instantiate the unit tests for the very special
// case of Scalar=float, LO=short, and GO=int for the global matrix,
// and Scalar=float, LO=short, GO=short for the local matrix.  This
// case is not covered in Ifpack2_SparseContainer.cpp.  We will use
// this case below; we have to put it here because explicit
// instantiations can't be in an anonymous namespace (even if
// namespace-qualified).  We only do this if explicit instantiation is
// turned off, because we don't know how to find out if explicit
// instantiation is enabled for these types.
//#ifndef HAVE_IFPACK2_EXPLICIT_INSTANTIATION
//template class Ifpack2::SparseContainer<Tpetra::RowMatrix<float, short, int>,
//                                        Ifpack2::ILUT<Tpetra::RowMatrix<float, short, short> > >;
//#endif // HAVE_IFPACK2_EXPLICIT_INSTANTIATION


namespace {
using Tpetra::global_size_t;
typedef tif_utest::Node Node;

//this macro declares the unit-test-class:
TEUCHOS_UNIT_TEST_TEMPLATE_3_DECL(SparseContainer, ILUT, Scalar, LocalOrdinal, GlobalOrdinal)
{
  using Teuchos::RCP;
  using std::endl;
  typedef Tpetra::Map<LocalOrdinal,GlobalOrdinal,Node> map_type;
  typedef Tpetra::CrsMatrix<Scalar,LocalOrdinal,GlobalOrdinal,Node> CRS;
  typedef Tpetra::Vector<Scalar,LocalOrdinal,GlobalOrdinal,Node> vec_type;
  typedef Ifpack2::ILUT< Tpetra::RowMatrix<Scalar,LocalOrdinal,LocalOrdinal,Node>    > ILUTlo;
  typedef Ifpack2::ILUT< Tpetra::RowMatrix<Scalar,LocalOrdinal,GlobalOrdinal,Node>   > ILUTgo;
  typedef Tpetra::RowMatrix<Scalar,LocalOrdinal,GlobalOrdinal,Node> ROW;

//we are now in a class method declared by the above macro, and
//that method has these input arguments:
//Teuchos::FancyOStream& out, bool& success

  out << "Ifpack2::Version(): " << Ifpack2::Version () << endl
      << "Creating test problem" << endl;

  // The simple joy of tridiagonal matrices
  global_size_t num_rows_per_proc = 5;
  RCP<const map_type> rowmap =
    tif_utest::create_tpetra_map<LocalOrdinal,GlobalOrdinal,Node> (num_rows_per_proc);
  Teuchos::RCP<const CRS> crsmatrix =
    tif_utest::create_test_matrix<Scalar,LocalOrdinal,GlobalOrdinal,Node> (rowmap);
  vec_type x (rowmap), y (rowmap), z (rowmap), d (rowmap);
  Teuchos::ArrayRCP<Scalar> x_ptr = x.get1dViewNonConst();
  Teuchos::ArrayRCP<Scalar> y_ptr = y.get1dViewNonConst();

  out << "Filling x with pseudorandom numbers" << endl;

  // Fill x for all time
  Teuchos::ScalarTraits<double>::seedrandom(24601);
  x.randomize();

  // ====================================== //
  //        Sparse Container + ILUT         //
  // ====================================== //

  // Set IDs to grab the whole matrix
  Teuchos::Array<Teuchos::Array<typename CRS::local_ordinal_type>> blockRows(1);
  blockRows[0].resize(num_rows_per_proc);
  for (size_t i = 0; i < num_rows_per_proc; ++i) {
    blockRows[0][i] = i;
  }

  out << "SparseContainer constructor" << endl;

  Ifpack2::SparseContainer<ROW, ILUTlo> MyContainer (crsmatrix, blockRows, Teuchos::null, false);

  out << "Setting SparseContainer parameters" << endl;

  Teuchos::ParameterList params;
  params.set ("fact: ilut level-of-fill", 1.0);
  params.set ("fact: drop tolerance", 0.0);
  MyContainer.setParameters (params);

  out << "Initializing SparseContainer" << endl;
  MyContainer.initialize ();
  out << "Computing SparseContainer" << endl;
  MyContainer.compute ();

  // Reference ILUT
  out << "Setting up reference ILUT implementation" << endl;
  ILUTgo prec(crsmatrix);
  prec.setParameters(params);
  prec.initialize();
  prec.compute();

  // Apply the SparseContainer
  out << "Applying the SparseContainer" << endl;
  MyContainer.applyMV(x,y);

  // Apply raw ILUT
  out << "Applying reference ILUT" << endl;
  prec.apply(x,z);

  // Diff
  out << "Computing results" << endl;
  TEST_COMPARE_FLOATING_ARRAYS(y.get1dView(), z.get1dView(), 1e4*Teuchos::ScalarTraits<Scalar>::eps());

  // Weighted Apply the SparseContainer
  out << "Testing SparseContainer::weightedApply" << endl;
  d.putScalar(1.0);
  MyContainer.weightedApplyMV(x,y,d);

  // Diff
  out << "Computing results" << endl;
  TEST_COMPARE_FLOATING_ARRAYS(y.get1dView(), z.get1dView(), 1e4*Teuchos::ScalarTraits<Scalar>::eps());

}



// Unit test for DenseContainer.
//
// 1. Create a global test matrix A, exact solution x_exact, and
//    right-hand side b (defined as b = A*x_exact).
// 2. Define the local submatrix as the entire local matrix.
// 3. Apply DenseContainer to approximate the solution x of Ax=b.
//
// If running on only one (MPI) process, x should equal x_exact (to
// within a reasonable tolerance).
TEUCHOS_UNIT_TEST_TEMPLATE_3_DECL(DenseContainer, FullMatrixSameScalar, Scalar, LocalOrdinal, GlobalOrdinal)
{
  using Teuchos::Array;
  using Teuchos::ArrayRCP;
  using Teuchos::outArg;
  using Teuchos::RCP;
  using Teuchos::REDUCE_MIN;
  using Teuchos::reduceAll;
  using std::cerr;
  using std::endl;
  typedef Tpetra::Map<LocalOrdinal, GlobalOrdinal, Node> map_type;
  typedef Tpetra::CrsMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node> crs_matrix_type;
  typedef Tpetra::RowMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node> row_matrix_type;
  typedef Tpetra::Vector<Scalar, LocalOrdinal, GlobalOrdinal, Node> vec_type;
  typedef Ifpack2::DenseContainer<row_matrix_type, Scalar> container_type;
  typedef Teuchos::ScalarTraits<Scalar> STS;
  typedef typename Teuchos::ScalarTraits<Scalar>::magnitudeType magnitude_type;
  typedef Teuchos::ScalarTraits<magnitude_type> STM;

  int localSuccess = 1;
  int globalSuccess = 1;

  out << "Ifpack2::Version(): " << Ifpack2::Version () << endl
      << "Creating test problem" << endl;

  global_size_t numRowsPerProc = 5;
  RCP<const map_type> rowMap =
    tif_utest::create_tpetra_map<LocalOrdinal, GlobalOrdinal, Node> (numRowsPerProc);

  out << "Creating the test matrix A" << endl;
  RCP<const crs_matrix_type> A =
    tif_utest::create_test_matrix<Scalar, LocalOrdinal, GlobalOrdinal, Node> (rowMap);

  out << "Creating an exact solution vector x" << endl;
  vec_type x_exact (rowMap);
  Teuchos::ScalarTraits<double>::seedrandom (24601);
  x_exact.randomize ();

  out << "Creating the right-hand side vector b of the linear system Ax=b" << endl;
  vec_type b (rowMap);
  A->apply (x_exact, b);

  vec_type y (rowMap);
  vec_type d (rowMap);

  // Set indices to grab the whole matrix
  Array<Array<LocalOrdinal>> blockRows(1);
  blockRows[0].resize(numRowsPerProc);
  for (size_t i = 0; i < numRowsPerProc; ++i) {
    blockRows[0][i] = i;
  }

  // For all the DenseContainer operations, we take special care to
  // ensure that all processes successfully make it through each
  // operation without throwing an exception.  This helped me a lot
  // when I was debugging DenseContainer::extract(), for example.  I
  // found that printing the exception message on each process to cerr
  // (instead of to out) actually let me read the exception message
  // before the test quit.  Otherwise, I wouldn't get to see the
  // exception message.

  out << "DenseContainer constructor" << endl;
  RCP<container_type> MyContainer;
  try {
    MyContainer = Teuchos::rcp (new container_type (A, blockRows, Teuchos::null, false));
    localSuccess = 1;
  } catch (std::exception& e) {
    localSuccess = 0;
    cerr << e.what () << endl;
  }
  reduceAll<int, int> (* (rowMap->getComm ()), REDUCE_MIN,
                       localSuccess, outArg (globalSuccess));
  TEST_EQUALITY_CONST( globalSuccess, 1 );

  out << "DenseContainer::initialize" << endl;
  try {
    MyContainer->initialize ();
    localSuccess = 1;
  } catch (std::exception& e) {
    localSuccess = 0;
    cerr << e.what () << endl;
  }
  reduceAll<int, int> (* (rowMap->getComm ()), REDUCE_MIN,
                       localSuccess, outArg (globalSuccess));
  TEST_EQUALITY_CONST( globalSuccess, 1 );

  out << "DenseContainer::compute" << endl;
  try {
    MyContainer->compute ();
    localSuccess = 1;
  } catch (std::exception& e) {
    localSuccess = 0;
    cerr << e.what () << endl;
  }
  reduceAll<int, int> (* (rowMap->getComm ()), REDUCE_MIN,
                       localSuccess, outArg (globalSuccess));
  TEST_EQUALITY_CONST( globalSuccess, 1 );

  // Apply the DenseContainer to solve the linear system Ax=b for x.
  vec_type x (rowMap);
  x.putScalar (0.0);
  out << "DenseContainer::apply" << endl;
  try {
    MyContainer->applyMV(b, x);
    localSuccess = 1;
  } catch (std::exception& e) {
    localSuccess = 0;
    cerr << e.what () << endl;
  }
  reduceAll<int, int> (* (rowMap->getComm ()), REDUCE_MIN,
                       localSuccess, outArg (globalSuccess));
  TEST_EQUALITY_CONST( globalSuccess, 1 );

  out << "Computing results:" << endl;
  magnitude_type errNorm = STM::zero ();
  {
    vec_type e (x, Teuchos::Copy);
    e.update (-1.0, x_exact, 1.0); // e = x - x_exact
    errNorm = e.norm2 ();
    out << "  ||x - x_exact||_2 = " << errNorm << endl;
  }

  // DenseContainer only solves the global system exactly
  // if there is only one MPI process in the communicator.
  if (rowMap->getComm ()->getSize () == 1) {
    localSuccess = (errNorm <= magnitude_type(1.0e2) * STS::eps ()) ? 1 : 0;
    globalSuccess = 1;
    reduceAll<int, int> (* (rowMap->getComm ()), REDUCE_MIN,
                         localSuccess, outArg (globalSuccess));
  }

  out << "DenseContainer::weightedApply" << endl;
  d.putScalar (1.0);
  MyContainer->weightedApplyMV(b, y, d);

  out << "Computing results of apply() and weightedApply() "
      << "(they should be the same in this case)" << endl;
  TEST_COMPARE_FLOATING_ARRAYS( x.get1dView(), y.get1dView(), magnitude_type(1.0e2) * STS::eps () );
}

// Unit test for BandedContainer.
//
// 1. Create a global test matrix A, exact solution x_exact, and
//    right-hand side b (defined as b = A*x_exact).
// 2. Define the local submatrix as the entire local matrix.
// 3. Apply BandedContainer to approximate the solution x of Ax=b.
//
// If running on only one (MPI) process, x should equal x_exact (to
// within a reasonable tolerance).
TEUCHOS_UNIT_TEST_TEMPLATE_3_DECL(BandedContainer, FullMatrixSameScalar, Scalar, LocalOrdinal, GlobalOrdinal)
{
  using Teuchos::Array;
  using Teuchos::ArrayRCP;
  using Teuchos::outArg;
  using Teuchos::RCP;
  using Teuchos::REDUCE_MIN;
  using Teuchos::reduceAll;
  using std::cerr;
  using std::endl;
  typedef Tpetra::Map<LocalOrdinal, GlobalOrdinal, Node> map_type;
  typedef Tpetra::CrsMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node> crs_matrix_type;
  typedef Tpetra::RowMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node> row_matrix_type;
  typedef Tpetra::Vector<Scalar, LocalOrdinal, GlobalOrdinal, Node> vec_type;
  typedef Ifpack2::BandedContainer<row_matrix_type, Scalar> container_type;
  typedef Teuchos::ScalarTraits<Scalar> STS;
  typedef typename Teuchos::ScalarTraits<Scalar>::magnitudeType magnitude_type;
  typedef Teuchos::ScalarTraits<magnitude_type> STM;

  int localSuccess = 1;
  int globalSuccess = 1;

  out << "Ifpack2::Version(): " << Ifpack2::Version () << endl
      << "Creating test problem" << endl;

  global_size_t numRowsPerProc = 5;
  RCP<const map_type> rowMap =
    tif_utest::create_tpetra_map<LocalOrdinal, GlobalOrdinal, Node> (numRowsPerProc);

  out << "Creating the test matrix A" << endl;
  RCP<const crs_matrix_type> A =
    tif_utest::create_banded_matrix<Scalar, LocalOrdinal, GlobalOrdinal, Node> (rowMap,3);

  out << "Creating an exact solution vector x" << endl;
  vec_type x_exact (rowMap);
  Teuchos::ScalarTraits<double>::seedrandom (24601);
  x_exact.randomize ();

  out << "Creating the right-hand side vector b of the linear system Ax=b" << endl;
  vec_type b (rowMap);
  A->apply (x_exact, b);

  vec_type y (rowMap);
  vec_type d (rowMap);

  // Set indices to grab the whole matrix
  Array<Array<LocalOrdinal>> blockRows(1);
  blockRows[0].resize(numRowsPerProc);
  for (size_t i = 0; i < numRowsPerProc; ++i) {
    blockRows[0][i] = i;
  }

  // For all the BandedContainer operations, we take special care to
  // ensure that all processes successfully make it through each
  // operation without throwing an exception.  This helped me a lot
  // when I was debugging BandedContainer::extract(), for example.  I
  // found that printing the exception message on each process to cerr
  // (instead of to out) actually let me read the exception message
  // before the test quit.  Otherwise, I wouldn't get to see the
  // exception message.

  out << "BandedContainer constructor" << endl;
  RCP<container_type> MyContainer;
  try {
    MyContainer = Teuchos::rcp (new container_type (A, blockRows, Teuchos::null, false));
    localSuccess = 1;
  } catch (std::exception& e) {
    localSuccess = 0;
    cerr << e.what () << endl;
  }
  reduceAll<int, int> (* (rowMap->getComm ()), REDUCE_MIN,
                       localSuccess, outArg (globalSuccess));
  TEST_EQUALITY_CONST( globalSuccess, 1 );

  out << "BandedContainer::setParameters" << endl;
  try {
    const Teuchos::ParameterList params = Teuchos::ParameterList();
    MyContainer->setParameters(params);
    localSuccess = 1;
  } catch (std::exception& e) {
    localSuccess = 0;
    cerr << e.what () << endl;
  }
  reduceAll<int, int> (* (rowMap->getComm ()), REDUCE_MIN,
                       localSuccess, outArg (globalSuccess));
  TEST_EQUALITY_CONST( globalSuccess, 1 );

  out << "BandedContainer::initialize" << endl;
  try {
    MyContainer->initialize ();
    localSuccess = 1;
  } catch (std::exception& e) {
    localSuccess = 0;
    cerr << e.what () << endl;
  }
  reduceAll<int, int> (* (rowMap->getComm ()), REDUCE_MIN,
                       localSuccess, outArg (globalSuccess));
  TEST_EQUALITY_CONST( globalSuccess, 1 );

  out << "BandedContainer::compute" << endl;
  try {
    MyContainer->compute ();
    localSuccess = 1;
  } catch (std::exception& e) {
    localSuccess = 0;
    cerr << e.what () << endl;
  }
  reduceAll<int, int> (* (rowMap->getComm ()), REDUCE_MIN,
                       localSuccess, outArg (globalSuccess));
  TEST_EQUALITY_CONST( globalSuccess, 1 );

  // Apply the DenseContainer to solve the linear system Ax=b for x.
  vec_type x (rowMap);
  x.putScalar (0.0);
  out << "BandedContainer::apply" << endl;
  try {
    MyContainer->applyMV(b, x);
    localSuccess = 1;
  } catch (std::exception& e) {
    localSuccess = 0;
    cerr << e.what () << endl;
  }
  reduceAll<int, int> (* (rowMap->getComm ()), REDUCE_MIN,
                       localSuccess, outArg (globalSuccess));
  TEST_EQUALITY_CONST( globalSuccess, 1 );

  out << "Computing results:" << endl;
  magnitude_type errNorm = STM::zero ();
  {
    vec_type e (x, Teuchos::Copy);
    e.update (-1.0, x_exact, 1.0); // e = x - x_exact
    errNorm = e.norm2 ();
    out << "  ||x - x_exact||_2 = " << errNorm << endl;
  }

  // DenseContainer only solves the global system exactly
  // if there is only one MPI process in the communicator.
  if (rowMap->getComm ()->getSize () == 1) {
    localSuccess = (errNorm <= magnitude_type(1.0e2) * STS::eps ()) ? 1 : 0;
    globalSuccess = 1;
    reduceAll<int, int> (* (rowMap->getComm ()), REDUCE_MIN,
                         localSuccess, outArg (globalSuccess));
  }

  out << "DenseContainer::weightedApply" << endl;
  d.putScalar (1.0);
  MyContainer->weightedApplyMV(b, y, d);

  out << "Computing results of apply() and weightedApply() "
      << "(they should be the same in this case)" << endl;
  TEST_COMPARE_FLOATING_ARRAYS( x.get1dView(), y.get1dView(), magnitude_type(1.0e2) * STS::eps () );
}

// Define the set of unit tests to instantiate in this file.
#define UNIT_TEST_GROUP_SC_LO_GO(Scalar,LocalOrdinal,GlobalOrdinal) \
  TEUCHOS_UNIT_TEST_TEMPLATE_3_INSTANT( SparseContainer, ILUT, Scalar, LocalOrdinal, GlobalOrdinal) \
  TEUCHOS_UNIT_TEST_TEMPLATE_3_INSTANT( BandedContainer, FullMatrixSameScalar, Scalar, LocalOrdinal,GlobalOrdinal) \
  TEUCHOS_UNIT_TEST_TEMPLATE_3_INSTANT( DenseContainer, FullMatrixSameScalar, Scalar, LocalOrdinal,GlobalOrdinal) \

// NOTE (mfh 21 Oct 2015) This test is special, because it wants to
// use two different GlobalOrdinal types, but Ifpack2 does not do ETI
// for SparseContainer for that case.  I think this reflects a flaw in
// the design of SparseContainer rather than a flaw in Ifpack2's ETI
// system.  It's also worrisome that the test never actually exercised
// GO != LO, because it was only ever instantiated for LO = int and GO
// = int.  Anyway, I'll protect that one instantiation for now.

#if defined(HAVE_TPETRA_INST_DOUBLE) && defined(HAVE_TPETRA_INST_INT_INT)

// Instantiate the unit tests for Scalar=double, LO=int, and GO=int.
UNIT_TEST_GROUP_SC_LO_GO(double, int, int)

#endif // defined(HAVE_TPETRA_INST_DOUBLE) && defined(HAVE_TPETRA_INST_INT_INT)

// mfh 03 Sep 2013: See the explicit instantiation at the top of this file.
//#ifndef HAVE_IFPACK2_EXPLICIT_INSTANTIATION
//UNIT_TEST_GROUP_SCALAR_ORDINAL(float, short, int)
//#endif // HAVE_IFPACK2_EXPLICIT_INSTANTIATION

} // namespace (anonymous)