1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
|
/*
//@HEADER
// ***********************************************************************
//
// Ifpack2: Templated Object-Oriented Algebraic Preconditioner Package
// Copyright (2009) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
//@HEADER
*/
/// \file Ifpack2_UnitTestDenseSolver.cpp
// \brief Unit test for Ifpack2::Details::TriDiSolver.
#include <Ifpack2_ConfigDefs.hpp>
#include <Teuchos_UnitTestHarness.hpp>
#include <Ifpack2_Version.hpp>
#include <iostream>
#include <Ifpack2_UnitTestHelpers.hpp>
#include <Ifpack2_Details_TriDiSolver.hpp>
#include <Ifpack2_Details_DenseSolver.hpp>
#include <Tpetra_CrsMatrix.hpp>
#include <Tpetra_Core.hpp>
#include <Teuchos_LAPACK.hpp>
#include <Teuchos_SerialTriDiMatrix.hpp>
namespace {
TEUCHOS_UNIT_TEST_TEMPLATE_3_DECL(TriDiSolver, LapackComparison, ScalarType, LocalOrdinalType, GlobalOrdinalType)
{
using Teuchos::Array;
using Teuchos::ArrayRCP;
using Teuchos::as;
using Teuchos::OSTab;
using Teuchos::RCP;
using Teuchos::rcp;
using Teuchos::rcpFromRef;
using Teuchos::toString;
using std::endl;
typedef ScalarType scalar_type;
typedef LocalOrdinalType local_ordinal_type;
typedef GlobalOrdinalType global_ordinal_type;
typedef Tpetra::Map<>::node_type node_type;
typedef Tpetra::global_size_t GST;
typedef Teuchos::ScalarTraits<scalar_type> STS;
typedef typename STS::magnitudeType magnitude_type;
// typedef Teuchos::SerialTriDiMatrix<local_ordinal_type, scalar_type> crs_matrix_type;
typedef Tpetra::CrsMatrix<scalar_type,
local_ordinal_type,
global_ordinal_type,
node_type> crs_matrix_type;
typedef Tpetra::RowMatrix<scalar_type,
local_ordinal_type,
global_ordinal_type,
node_type> row_matrix_type;
typedef Tpetra::Vector<scalar_type,
local_ordinal_type,
global_ordinal_type,
node_type> vec_type;
typedef Tpetra::Map<local_ordinal_type,
global_ordinal_type,
node_type> map_type;
typedef Ifpack2::Details::TriDiSolver<row_matrix_type> solver_type;
// typedef Ifpack2::Details::DenseSolver<row_matrix_type> solver_type;
RCP<const Teuchos::Comm<int> > comm = Tpetra::getDefaultComm ();
// We are now in a class method declared by the above macro.
// The method has these input arguments:
// (Teuchos::FancyOStream& out, bool& success)
out << "Ifpack2::Version(): " << Ifpack2::Version () << endl;
out << "Creating Maps" << endl;
// Create a square matrix with 3 rows per process.
// Give it diagonal blocks that are easy for LAPACK to solve.
const size_t localNumRows = 3;
const GST globalNumRows = comm->getSize () * localNumRows;
const global_ordinal_type indexBase = 0;
RCP<const map_type> rowMap = rcp (new map_type (globalNumRows, localNumRows, indexBase, comm));
RCP<const map_type> colMap = rowMap;
RCP<const map_type> domMap = rowMap;
RCP<const map_type> ranMap = rowMap;
out << "Creating matrix A" << endl;
// The matrix will be block diagonal, so we can use the row Map as
// the column Map.
RCP<crs_matrix_type> A = rcp(new crs_matrix_type (rowMap, colMap, 3));
Array<scalar_type> val (3);
Array<local_ordinal_type> ind (3);
out << "Filling A_tridi" << endl;
Teuchos::SerialTriDiMatrix<int, scalar_type> A_tridi (3, 3);
A_tridi(0, 0) = as<scalar_type> (2);
A_tridi(0, 1) = as<scalar_type> (-1);
// A_tridi(0, 2) = as<scalar_type> (0);
A_tridi(1, 0) = as<scalar_type> (-1);
A_tridi(1, 1) = as<scalar_type> (3);
A_tridi(1, 2) = as<scalar_type> (-1);
// A_tridi(2, 0) = as<scalar_type> (7);
A_tridi(2, 1) = as<scalar_type> (-2);
A_tridi(2, 2) = as<scalar_type> (1); //
A_tridi.print(out);
out << "Filling A CRS" << endl;
val[0] = A_tridi(0, 0);
val[1] = A_tridi(0, 1);
// val[2] = A_tridi(0, 2);
val[2] = 0;
ind[0] = 0;
ind[1] = 1;
ind[2] = 2;
A->insertLocalValues (0, ind (), val ());
val[0] = A_tridi(1, 0);
val[1] = A_tridi(1, 1);
val[2] = A_tridi(1, 2);
ind[0] = 0;
ind[1] = 1;
ind[2] = 2;
A->insertLocalValues (1, ind (), val ());
// val[0] = A_tridi(2, 0);
val[0] = 0;
val[1] = A_tridi(2, 1);
val[2] = A_tridi(2, 2);
ind[0] = 0;
ind[1] = 1;
ind[2] = 2;
A->insertLocalValues (2, ind (), val ());
out << "Calling fillComplete on A" << endl;
A->fillComplete (domMap, ranMap);
out << "Creating x_exact and b for the test problem" << endl;
// Randomizing makes results not reproducible across platforms.
vec_type x_exact (domMap);
{
ArrayRCP<scalar_type> x_exact_view = x_exact.get1dViewNonConst ();
x_exact_view[0] = 1;
x_exact_view[1] = 4;
x_exact_view[2] = 9;
}
out << "x_exact: " << toString ((x_exact.get1dView ()) ()) << endl;
vec_type b (ranMap);
A->apply (x_exact, b); // b := A*x_exact
out << "b: " << toString ((b.get1dView ()) ()) << endl;
out << "Creating solver" << endl;
solver_type solver (A);
out << "Calling initialize" << endl;
solver.initialize ();
out << "Calling compute" << endl;
solver.compute ();
out << "Calling solver's describe() method" << endl;
solver.describe (out, Teuchos::VERB_EXTREME);
out << "Calling apply" << endl;
vec_type x_computed (ranMap);
solver.apply (b, x_computed); // solve A*x_computed=b for x_computed
out << "x_computed: " << toString ((x_computed.get1dView ()) ()) << endl;
// Compute the residual.
vec_type r (ranMap);
A->apply (x_computed, r); // r := A*x_computed
r.update (STS::one (), b, -STS::one ()); // r := b - A*x_computed
const magnitude_type absResNorm = r.norm2 ();
out << "\\| b - A*x_computed \\|_2 = " << absResNorm << endl;
const magnitude_type normB = b.norm2 ();
const magnitude_type relResNorm = absResNorm / normB;
out << "\\| b - A*x_computed \\|_2 / \\|b\\|_2 = " << relResNorm << endl;
out << "A->describe() result:" << endl;
out.setOutputToRootOnly(-1);
A->describe (out, Teuchos::VERB_EXTREME);
out.setOutputToRootOnly(0);
out << "x_exact.describe() result:" << endl;
out.setOutputToRootOnly(-1);
x_exact.describe (out, Teuchos::VERB_EXTREME);
out.setOutputToRootOnly(0);
out << "b.describe() result:" << endl;
out.setOutputToRootOnly(-1);
b.describe (out, Teuchos::VERB_EXTREME);
out.setOutputToRootOnly(0);
out << "x_computed.describe() result:" << endl;
out.setOutputToRootOnly(-1);
x_computed.describe (out, Teuchos::VERB_EXTREME);
out.setOutputToRootOnly(0);
out << "r.describe() result:" << endl;
out.setOutputToRootOnly(-1);
r.describe (out, Teuchos::VERB_EXTREME);
out.setOutputToRootOnly(0);
out << "solver.describe() result:" << endl;
out.setOutputToRootOnly(-1);
solver.describe (out, Teuchos::VERB_EXTREME);
out.setOutputToRootOnly(0);
TEUCHOS_TEST_FOR_EXCEPTION(
relResNorm > 10*STS::eps (), std::logic_error,
"Dense failed to solve the problem to within a small tolerance "
<< 10*STS::eps () << ". Relative residual norm: " << relResNorm << ".");
// Permutation array for LAPACK's LU factorization.
Array<int> ipiv (A_tridi.numRowsCols ());
// Fill the LU permutation array with zeros.
std::fill (ipiv.begin (), ipiv.end (), 0);
// Compute the LU factorization.
Teuchos::LAPACK<int, scalar_type> lapack;
int INFO = 0;
out << "A_tridi before GETRF:" << endl;
A_tridi.print(out);
out << "Calling GTTRF (" << A_tridi.numRowsCols () << ", A.DL, A.D, A.DU, A.DU2, IPIV, INFO)" << endl;
// Remember that LAPACK's LU factorization overwrites its input.
lapack.GTTRF (A_tridi.numRowsCols(),
A_tridi.DL(),
A_tridi.D(),
A_tridi.DU(),
A_tridi.DU2(),
ipiv.getRawPtr (), &INFO);
out << "A_tridi after GTTRF:" << endl;
A_tridi.print(out);
out<<std::endl;
out << "ipiv after GETRF: " << toString (ipiv) << endl
<< "INFO: " << INFO << endl;
TEUCHOS_TEST_FOR_EXCEPTION(
INFO < 0, std::logic_error, "Bug in test after calling GTTRF: "
"INFO = " << INFO << " < 0. "
"Please report this bug to the Ifpack2 developers.");
TEUCHOS_TEST_FOR_EXCEPTION(
INFO > 0, std::logic_error, "Bug in test after calling GTTRF: "
"INFO = " << INFO << " > 0. "
"This means that the U factor of the test matrix is exactly singular, "
"and therefore that the test's authors need to come up with a different "
"test matrix. Please report this bug to the Ifpack2 developers.");
Array<scalar_type> x_lapack (A_tridi.numRowsCols());
// LAPACK overwrites its input.
ArrayRCP<const scalar_type> b_view = b.get1dView ();
std::copy (b_view.begin (), b_view.end (), x_lapack.begin ());
const int numRhs = 1;
out << "Calling GTTRS ('N', " << A_tridi.numRowsCols() << ", " << numRhs
<< ", A.DL, A.D, A.DU, A.DU2, IPIV, X, "
<< static_cast<int> (x_lapack.size ()) << ", INFO)" << endl;
lapack.GTTRS ('N', A_tridi.numRowsCols (), numRhs,
A_tridi.DL(),
A_tridi.D(),
A_tridi.DU(),
A_tridi.DU2(),
ipiv.getRawPtr (), x_lapack.getRawPtr (),
static_cast<int> (x_lapack.size ()), &INFO);
TEUCHOS_TEST_FOR_EXCEPTION(
INFO != 0, std::logic_error, "Bug in test after calling GTTRS: "
"INFO = " << INFO << " != 0. "
"This means that the U factor of the test matrix is exactly singular, "
"and therefore that the test's authors need to come up with a different "
"test matrix. Please report this bug to the Ifpack2 developers.");
out << "Exact solution: " << toString (x_lapack) << endl;
// Compare LAPACK solution against TriDiSolver solution. They
// should be identical, or nearly so (if LAPACK was nondeterministic
// -- unlikely with such a small problem).
// Make a copy of x_lapack as a MultiVector. (This is NOT a view).
vec_type x_lapack_mv (x_exact.getMap (), x_lapack ());
// Measure the difference between x_lapack and x_computed.
r = x_lapack_mv;
r.update (STS::one (), x_computed, -STS::one ()); // r := x_computed - x_lapack
const magnitude_type lapackAbsResNorm = r.norm2 ();
const magnitude_type lapackRelResNorm = lapackAbsResNorm / x_lapack_mv.norm2 ();
out << "\\|x_lapack - x_computed\\|_2 / \\|x_lapack\\|_2 = "
<< lapackRelResNorm << endl;
TEUCHOS_TEST_FOR_EXCEPTION(
lapackRelResNorm > 10*STS::eps (), std::logic_error,
"TriDiSolver failed to reproduce LAPACK's solution to within a small tolerance "
<< 10*STS::eps () << ". \\|x_lapack - x_computed\\|_2 / \\|x_lapack\\|_2 = "
<< lapackRelResNorm << ".");
}
// Define the set of unit tests to instantiate in this file.
#define UNIT_TEST_GROUP_SC_LO_GO( SC, LO, GO ) \
TEUCHOS_UNIT_TEST_TEMPLATE_3_INSTANT( TriDiSolver, LapackComparison, SC, LO, GO )
#include "Ifpack2_ETIHelperMacros.h"
IFPACK2_ETI_MANGLING_TYPEDEFS()
// Test all enabled combinations of Scalar (SC), LocalOrdinal (LO),
// and GlobalOrdinal (GO) types, where Scalar is real.
IFPACK2_INSTANTIATE_SLG_REAL( UNIT_TEST_GROUP_SC_LO_GO )
} // namespace (anonymous)
|