File: test_02.hpp

package info (click to toggle)
trilinos 12.18.1-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 825,604 kB
  • sloc: cpp: 3,352,065; ansic: 432,926; fortran: 169,495; xml: 61,903; python: 40,836; sh: 32,697; makefile: 26,612; javascript: 8,535; perl: 7,136; f90: 6,372; csh: 4,183; objc: 2,620; lex: 1,469; lisp: 810; yacc: 497; awk: 364; ml: 281; php: 145
file content (303 lines) | stat: -rw-r--r-- 16,009 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
// @HEADER
// ************************************************************************
//
//                           Intrepid2 Package
//                 Copyright (2007) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Kyungjoo Kim  (kyukim@sandia.gov), or
//                    Mauro Perego  (mperego@sandia.gov)
//
// ************************************************************************
// @HEADER


/** \file
    \brief  Test of the CellTools class.
    \author Created by P. Bochev, D. Ridzal, K. Peterson and Kyungjoo Kim
*/

#include "Intrepid2_config.h"

#ifdef HAVE_INTREPID2_DEBUG
#define INTREPID2_TEST_FOR_DEBUG_ABORT_OVERRIDE_TO_CONTINUE
#endif

//#include "Intrepid2_DefaultCubatureFactory.hpp"
#include "Intrepid2_Cubature.hpp"
#include "Intrepid2_CubatureDirectLineGauss.hpp"
#include "Intrepid2_CubatureTensor.hpp"

#include "Intrepid2_CellTools.hpp"

#include "Teuchos_oblackholestream.hpp"
#include "Teuchos_RCP.hpp"
#include "Teuchos_ScalarTraits.hpp"

namespace Intrepid2 {
  
  namespace Test {
#define INTREPID2_TEST_ERROR_EXPECTED( S )                              \
    try {                                                               \
      S ;                                                               \
    }                                                                   \
    catch (std::logic_error err) {                                      \
      *outStream << "Expected Error ----------------------------------------------------------------\n"; \
      *outStream << err.what() << '\n';                                 \
      *outStream << "-------------------------------------------------------------------------------" << "\n\n"; \
    };                                                                  
#define ConstructWithLabel(obj, ...) obj(#obj, __VA_ARGS__)
        
    template<typename ValueType, typename DeviceSpaceType>
    int CellTools_Test02(const bool verbose) {

      Teuchos::RCP<std::ostream> outStream;
      Teuchos::oblackholestream bhs; // outputs nothing

      if (verbose)
        outStream = Teuchos::rcp(&std::cout, false);
      else
        outStream = Teuchos::rcp(&bhs,       false);

      Teuchos::oblackholestream oldFormatState;
      oldFormatState.copyfmt(std::cout);

      typedef typename
        Kokkos::Impl::is_space<DeviceSpaceType>::host_mirror_space::execution_space HostSpaceType ;

      *outStream << "DeviceSpace::  "; DeviceSpaceType::print_configuration(*outStream, false);
      *outStream << "HostSpace::    ";   HostSpaceType::print_configuration(*outStream, false);
      
      *outStream
        << "===============================================================================\n"
        << "|                                                                             |\n"
        << "|                              Unit Test CellTools                            |\n"
        << "|                                                                             |\n"
        << "|     1) Edge parametrizations                                                |\n"
        << "|     2) Face parametrizations                                                |\n"
        << "|     3) Edge tangents                                                        |\n"
        << "|     4) Face tangents and normals                                            |\n"
        << "|                                                                             |\n"
        << "|  Questions? Contact  Pavel Bochev (pbboche@sandia.gov)                      |\n"
        << "|                      Denis Ridzal (dridzal@sandia.gov), or                  |\n"
        << "|                      Kara Peterson(kjpeter@sandia.gov), or                  |\n"
        << "|                      Kyungjoo Kim (kyukim@sandia.gov)                       |\n"
        << "|                                                                             |\n"
        << "|  Intrepid's website: http://trilinos.sandia.gov/packages/intrepid           |\n"
        << "|  Trilinos website:   http://trilinos.sandia.gov                             |\n"
        << "|                                                                             |\n"
        << "===============================================================================\n";
  
      typedef CellTools<DeviceSpaceType> ct;
      typedef Kokkos::DynRankView<ValueType,DeviceSpaceType> DynRankView;

      const ValueType tol = tolerence()*100.0;

      int errorFlag = 0;

      try {

        /***********************************************************************************************
         *
         * Common for test 3 and 4: edge tangents and face normals for standard cells with base topo
         *
         **********************************************************************************************/
        
        // Allocate storage and extract all standard cells with base topologies
        std::vector<shards::CellTopology> standardBaseTopologies;    
        shards::getTopologies(standardBaseTopologies, 4, shards::STANDARD_CELL, shards::BASE_TOPOLOGY);
        const auto topoSize = standardBaseTopologies.size();
        
        // Define topologies for the edge and face parametrization domains. (faces are Tri or Quad)
        const auto paramEdge     = shards::CellTopology(shards::getCellTopologyData<shards::Line<2> >() );
        const auto paramTriFace  = shards::CellTopology(shards::getCellTopologyData<shards::Triangle<3> >() );
        const auto paramQuadFace = shards::CellTopology(shards::getCellTopologyData<shards::Quadrilateral<4> >() );
        
        *outStream
          << "\n"
          << "===============================================================================\n" 
          << "| Test 3: edge tangents/normals for stand. cells with base topologies:        |\n" 
          << "===============================================================================\n\n";

        {
          // Define cubature on the edge parametrization domain:
          const auto testAccuracy = 6;
          CubatureDirectLineGauss<DeviceSpaceType> edgeCubature(testAccuracy); 

          const auto cubDim       = edgeCubature.getDimension();
          const auto numCubPoints = edgeCubature.getNumPoints();
          
          // Allocate storage for cubature points and weights on edge parameter domain and fill with points:
          DynRankView ConstructWithLabel(paramEdgePoints,  numCubPoints, cubDim);
          DynRankView ConstructWithLabel(paramEdgeWeights, numCubPoints);

          edgeCubature.getCubature(paramEdgePoints, paramEdgeWeights);
          
          // Loop over admissible topologies 
          for (size_type topoOrd=0;topoOrd<topoSize;++topoOrd) {
            const auto cell = standardBaseTopologies[topoOrd];

            // skip cells not supported
            if (!ct::hasReferenceCell(cell))
              continue;
            
            // Exclude 0D (node), 1D (Line) 
            if ( cell.getDimension() >= 2 ) { //&& cell.getKey() != shards::Pyramid<5>::key ) { 
              const auto cellDim  = cell.getDimension();
              const auto nCount   = cell.getNodeCount();
              const auto vCount   = cell.getVertexCount();

              DynRankView ConstructWithLabel(refCellVertices, nCount, cellDim);
              ct::getReferenceSubcellVertices(refCellVertices, cellDim, 0, cell);
              
              *outStream << " Testing edge tangents (and normals for cellDim = 2) for " 
                         <<  cell.getName() << " cellDim = " << cellDim <<"\n";
                            
              // Array for physical cell vertices ( must have rank 3 for setJacobians)
              DynRankView ConstructWithLabel(physCellVertices, 1, vCount, cellDim);
              
              // Randomize reference cell vertices by moving them up to +/- (1/8) units along their
              // coordinate axis. Guaranteed to be non-degenerate for standard cells with base topology 
              for (size_type v=0;v<vCount;++v) 
                for (size_type d=0;d<cellDim;++d) {
                  const auto delta = Teuchos::ScalarTraits<ValueType>::random()/8.0;
                  physCellVertices(0, v, d) = refCellVertices(v, d) + delta;
                }
        
              // Allocate storage for cub. points on a ref. edge; Jacobians, phys. edge tangents/normals
              DynRankView ConstructWithLabel(refEdgePoints,          numCubPoints, cellDim);        

              // here, 1 means that the container includes a single cell
              DynRankView ConstructWithLabel(edgePointsJacobians, 1, numCubPoints, cellDim, cellDim);
              DynRankView ConstructWithLabel(edgePointTangents,   1, numCubPoints, cellDim);
              DynRankView ConstructWithLabel(edgePointNormals,    1, numCubPoints, cellDim);        
              
              // Loop over edges:
              for (size_type edgeOrd=0;edgeOrd<cell.getEdgeCount();++edgeOrd) {
                /* 
                 * Compute tangents on the specified physical edge using CellTools:
                 *    1. Map points from edge parametrization domain to ref. edge with specified ordinal
                 *    2. Compute parent cell Jacobians at ref. edge points
                 *    3. Compute physical edge tangents
                 */
                ct::mapToReferenceSubcell(refEdgePoints, paramEdgePoints, 1, edgeOrd, cell);
                ct::setJacobian(edgePointsJacobians, refEdgePoints, physCellVertices, cell);
                ct::getPhysicalEdgeTangents(edgePointTangents, edgePointsJacobians, edgeOrd, cell); 

                /*
                 * Compute tangents directly using parametrization of phys. edge and compare with CellTools tangents.
                 *    1. Get edge vertices
                 *    2. For affine edges tangent coordinates are given by F'(t) = (V1-V0)/2
                 *       (for now we only test affine edges, but later we will test edges for cells 
                 *        with extended topologies.)
                 */
                const auto v0ord = cell.getNodeMap(1, edgeOrd, 0);
                const auto v1ord = cell.getNodeMap(1, edgeOrd, 1);
                
                for (auto pt=0;pt<numCubPoints;++pt) {
                  
                  // Temp storage for directly computed edge tangents
                  DynRankView ConstructWithLabel(edgeBenchmarkTangents, 3);
                  
                  for (size_type d=0;d<cellDim;++d) {
                    edgeBenchmarkTangents(d) = (physCellVertices(0, v1ord, d) - physCellVertices(0, v0ord, d))/2.0;
                    
                    // Compare with d-component of edge tangent by CellTools
                    if ( std::abs(edgeBenchmarkTangents(d) - edgePointTangents(0, pt, d)) > tol ) {
                      errorFlag++;
                      *outStream
                        << std::setw(70) << "^^^^----FAILURE!" << "\n"
                        << " Edge tangent computation by CellTools failed for: \n"
                        << "       Cell Topology = " << cell.getName() << "\n"
                        << "        Edge ordinal = " << edgeOrd << "\n"
                        << "   Edge point number = " << pt << "\n"
                        << "  Tangent coordinate = " << d << "\n"
                        << "     CellTools value = " <<  edgePointTangents(0, pt, d) << "\n"
                        << "     Benchmark value = " <<  edgeBenchmarkTangents(d) << "\n\n";
                    }
                  } // for d
                  
                  // Test side normals for 2D cells only: edge normal has coordinates (t1, -t0)
                  if (cellDim == 2) {
                    ct::getPhysicalSideNormals(edgePointNormals, edgePointsJacobians, edgeOrd, cell);
                    if ( std::abs(edgeBenchmarkTangents(1) - edgePointNormals(0, pt, 0)) > tol ) {
                      errorFlag++;
                      *outStream
                        << std::setw(70) << "^^^^----FAILURE!" << "\n"
                        << " Edge Normal computation by CellTools failed for: \n"
                        << "       Cell Topology = " << cell.getName() << "\n"
                        << "        Edge ordinal = " << edgeOrd << "\n"
                        << "   Edge point number = " << pt << "\n"
                        << "   Normal coordinate = " << 0 << "\n"
                        << "     CellTools value = " <<  edgePointNormals(0, pt, 0) << "\n"
                        << "     Benchmark value = " <<  edgeBenchmarkTangents(1) << "\n\n";
                    }
                    if ( std::abs(edgeBenchmarkTangents(0) + edgePointNormals(0, pt, 1)) > tol ) {
                      errorFlag++;
                      *outStream
                        << std::setw(70) << "^^^^----FAILURE!" << "\n"
                        << " Edge Normal computation by CellTools failed for: \n"
                        << "       Cell Topology = " << cell.getName() << "\n"
                        << "        Edge ordinal = " << edgeOrd << "\n"
                        << "   Edge point number = " << pt << "\n"
                        << "   Normal coordinate = " << 1  << "\n"
                        << "     CellTools value = " <<  edgePointNormals(0, pt, 1) << "\n"
                        << "     Benchmark value = " << -edgeBenchmarkTangents(0) << "\n\n";
                    }
                  } // edge normals            
                } // for pt
              }// for edgeOrd
            }// if admissible cell
          }// topOrd
        }
      } catch (std::logic_error err) {
        //============================================================================================//
        // Wrap up test: check if the test broke down unexpectedly due to an exception                //
        //============================================================================================//
        *outStream << err.what() << "\n";
        errorFlag = -1000;
      }
      
      if (errorFlag != 0)
        std::cout << "End Result: TEST FAILED\n";
      else
        std::cout << "End Result: TEST PASSED\n";
      
      // reset format state of std::cout
      std::cout.copyfmt(oldFormatState);
      
      return errorFlag;
    }
  }
}