1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
|
// @HEADER
// ************************************************************************
//
// Intrepid2 Package
// Copyright (2007) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Kyungjoo Kim (kyukim@sandia.gov), or
// Mauro Perego (mperego@sandia.gov)
//
// ************************************************************************
// @HEADER
/** \file
\brief Test of the CellTools class.
\author Created by P. Bochev, D. Ridzal, K. Peterson and Kyungjoo Kim
*/
#include "Intrepid2_config.h"
#ifdef HAVE_INTREPID2_DEBUG
#define INTREPID2_TEST_FOR_DEBUG_ABORT_OVERRIDE_TO_CONTINUE
#endif
#include "Intrepid2_DefaultCubatureFactory.hpp"
#include "Intrepid2_CellTools.hpp"
#include "Teuchos_oblackholestream.hpp"
#include "Teuchos_RCP.hpp"
#include "Teuchos_ScalarTraits.hpp"
namespace Intrepid2 {
namespace Test {
#define INTREPID2_TEST_ERROR_EXPECTED( S ) \
try { \
S ; \
} \
catch (std::logic_error err) { \
*outStream << "Expected Error ----------------------------------------------------------------\n"; \
*outStream << err.what() << '\n'; \
*outStream << "-------------------------------------------------------------------------------" << "\n\n"; \
};
#define ConstructWithLabel(obj, ...) obj(#obj, __VA_ARGS__)
template<typename ValueType, typename DeviceSpaceType>
int CellTools_Test04(const bool verbose) {
Teuchos::RCP<std::ostream> outStream;
Teuchos::oblackholestream bhs; // outputs nothing
if (verbose)
outStream = Teuchos::rcp(&std::cout, false);
else
outStream = Teuchos::rcp(&bhs, false);
Teuchos::oblackholestream oldFormatState;
oldFormatState.copyfmt(std::cout);
typedef typename
Kokkos::Impl::is_space<DeviceSpaceType>::host_mirror_space::execution_space HostSpaceType ;
*outStream << "DeviceSpace:: "; DeviceSpaceType::print_configuration(*outStream, false);
*outStream << "HostSpace:: "; HostSpaceType::print_configuration(*outStream, false);
*outStream
<< "===============================================================================\n"
<< "| |\n"
<< "| Unit Test CellTools |\n"
<< "| |\n"
<< "| 1) Mapping to and from reference cells with base and extended topologies|\n"
<< "| using default initial guesses when computing the inverse F^{-1} |\n"
<< "| 2) Repeat all tests from 1) using user-defined initial guess for F^{-1} |\n"
<< "| 3) Exception testing |\n"
<< "| |\n"
<< "| Questions? Contact Pavel Bochev (pbboche@sandia.gov) |\n"
<< "| Denis Ridzal (dridzal@sandia.gov), or |\n"
<< "| Kara Peterson(kjpeter@sandia.gov), or |\n"
<< "| Kyungjoo Kim (kyukim@sandia.gov) |\n"
<< "| |\n"
<< "| Intrepid's website: http://trilinos.sandia.gov/packages/intrepid |\n"
<< "| Trilinos website: http://trilinos.sandia.gov |\n"
<< "| |\n"
<< "===============================================================================\n";
typedef CellTools<DeviceSpaceType> ct;
typedef RealSpaceTools<DeviceSpaceType> rst;
typedef Kokkos::DynRankView<ValueType,DeviceSpaceType> DynRankView;
const ValueType tol = tolerence()*100.0;
int errorFlag = 0;
// Collect all supported cell topologies
std::vector<shards::CellTopology> standardBaseTopologies;
shards::getTopologies(standardBaseTopologies, 4, shards::STANDARD_CELL, shards::BASE_TOPOLOGY);
const auto topoSize = standardBaseTopologies.size();
for (auto testCase=0;testCase<2;++testCase) {
try {
switch (testCase) {
case 0: {
*outStream
<< "\n"
<< "===============================================================================\n"
<< "| Test 1: computing F(x) and F^{-1}(x) using default initial guesses. |\n"
<< "===============================================================================\n\n";
break;
}
case 1: {
*outStream
<< "\n"
<< "===============================================================================\n"
<< "| Test 2: computing F(x) and F^{-1}(x) using user-defined initial guess. |\n"
<< "===============================================================================\n\n";
break;
}
}
/*
* Test summary:
*
* A reference point set is mapped to physical frame and then back to reference frame.
* Test passes if the final set of points matches the first set of points. The cell workset
* is generated by perturbing randomly the worksetCell of a reference cell with the specified
* cell topology.
*
*/
DefaultCubatureFactory cubFactory;
// Initialize testing env.
const auto numCells = 10;
const auto testAccuracy = 4;
DynRankView ConstructWithLabel(cubPointsMax, Parameters::MaxIntegrationPoints, Parameters::MaxDimension);
DynRankView ConstructWithLabel(cubWeightsMax, Parameters::MaxIntegrationPoints);
// for arbitrary high order elements, this should be Parameters::MaxIntegrationPoints
const auto maxNumNodes = 64;
DynRankView ConstructWithLabel(refCellNodesMax, maxNumNodes, Parameters::MaxDimension);
DynRankView ConstructWithLabel(worksetCellMax, numCells, maxNumNodes, Parameters::MaxDimension);
DynRankView ConstructWithLabel(physPointsMax, numCells, Parameters::MaxIntegrationPoints, Parameters::MaxDimension);
DynRankView ConstructWithLabel(controlPointsMax, numCells, Parameters::MaxIntegrationPoints, Parameters::MaxDimension);
DynRankView ConstructWithLabel(initGuessMax, numCells, Parameters::MaxIntegrationPoints, Parameters::MaxDimension);
// Loop over cell topologies, make cell workset for each one by perturbing the worksetCell & test methods
for (size_type topoOrd=0;topoOrd<topoSize;++topoOrd) {
const auto cell = standardBaseTopologies[topoOrd];
if (!ct::hasReferenceCell(cell))
continue;
// 1. Define a single reference point set using cubature factory with order 4 cubature
const auto cellCubature = cubFactory.create<DeviceSpaceType>(cell, testAccuracy);
const auto cubDim = cellCubature->getDimension();
const auto cubNumPoints = cellCubature->getNumPoints();
typedef Kokkos::pair<ordinal_type,ordinal_type> range_type;
range_type cubPointRange(0, cubNumPoints), cubDimRange(0, cubDim);
auto cubPoints = Kokkos::subdynrankview( cubPointsMax, cubPointRange, cubDimRange );
auto cubWeights = Kokkos::subdynrankview( cubWeightsMax, cubPointRange );
cellCubature->getCubature(cubPoints, cubWeights);
// 2. Define a cell workset by perturbing the worksetCell of the reference cell with the specified topology
// 2.1 Resize dimensions of the rank-3 (C,N,D) cell workset array for the current topology
const auto numNodes = cell.getNodeCount();
const auto cellDim = cell.getDimension();
range_type nodeRange(0, numNodes), cellDimRange(0, cellDim);
auto worksetCell = Kokkos::subdynrankview(worksetCellMax, Kokkos::ALL(), nodeRange, cellDimRange);
// 2.2 Copy worksetCell of the reference cell with the same topology to temp rank-2 (N,D) array
auto refCellNodes = Kokkos::subdynrankview(refCellNodesMax, nodeRange, cellDimRange);
ct::getReferenceSubcellNodes(refCellNodes, cellDim, 0, cell);
// 2.3 Create randomly perturbed version of the reference cell and save in the cell workset array
for (auto cellOrd=0;cellOrd<numCells;++cellOrd) {
// Move vertices +/-0.125 along their axes. Gives nondegenerate cells for base and extended topologies
for (size_type nodeOrd=0;nodeOrd<numNodes;++nodeOrd)
for(size_type d=0;d<cellDim;++d) {
const auto delta = Teuchos::ScalarTraits<double>::random()/16.0;
worksetCell(cellOrd, nodeOrd, d) = refCellNodes(nodeOrd, d) + delta;
}
}
/*
* 3.1 Test 1: single point set to single physical cell: map ref. point set in rank-2 (P,D) array
* to a physical point set in rank-2 (P,D) array for a specified cell ordinal. Use the cub.
* points array for this test. Resize physPoints and controlPoints to rank-2 (P,D) arrays.
*/
auto physPoints = Kokkos::subdynrankview( physPointsMax, Kokkos::ALL(), cubPointRange, cubDimRange );
auto controlPoints = Kokkos::subdynrankview( controlPointsMax, Kokkos::ALL(), cubPointRange, cubDimRange );
*outStream
<< " Mapping a set of " << cubNumPoints << " points to one cell in a workset of " << numCells << " "
<< cell.getName() << " cells. \n";
// Forward map:: requires cell ordinal; input (P,D) -> output (C,P,D)
ct::mapToPhysicalFrame(physPoints, cubPoints, worksetCell, cell);
// Inverse map: requires cell ordinal; input (C,P,D) -> output (C,P,D)
switch (testCase) {
case 0: {
ct::mapToReferenceFrame(controlPoints, physPoints, worksetCell, cell);
break;
}
case 1: {
auto initGuess = Kokkos::subdynrankview( initGuessMax, Kokkos::ALL(), cubPointRange, cubDimRange );
// cubPoints become the initial guess
rst::clone(initGuess, cubPoints);
ct::mapToReferenceFrameInitGuess(controlPoints, initGuess, physPoints, worksetCell, cell);
break;
}
}
// Points in controlPoints should match the originals in cubPoints up to a tolerance
for (auto cellOrd=0;cellOrd<numCells;++cellOrd)
for (auto pt=0;pt<cubNumPoints;++pt)
for (size_type d=0;d<cellDim;++d)
if( std::abs( controlPoints(cellOrd, pt, d) - cubPoints(pt, d) ) > tol ) {
errorFlag++;
*outStream
<< std::setw(70) << "^^^^----FAILURE!" << "\n"
<< " Mapping a single point set to a single physical cell in a workset failed for: \n"
<< " Cell Topology = " << cell.getName() << "\n"
<< " Physical cell ordinal in workset = " << cellOrd << "\n"
<< " Reference point ordinal = " << std::setprecision(12) << pt << "\n"
<< " At reference point coordinate = " << std::setprecision(12) << d << "\n"
<< " Original value = " << cubPoints(pt, d) << "\n"
<< " F^{-1}F(P_d) = " << controlPoints(cellOrd, pt, d) <<"\n";
}
}
} catch (std::logic_error err) {
*outStream << err.what() << "\n";
errorFlag = -1000;
}
}
if (errorFlag != 0)
std::cout << "End Result: TEST FAILED\n";
else
std::cout << "End Result: TEST PASSED\n";
// reset format state of std::cout
std::cout.copyfmt(oldFormatState);
return errorFlag;
}
} // end test
} // end intrepid2
|