1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
|
// @HEADER
// ************************************************************************
//
// Intrepid2 Package
// Copyright (2007) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Kyungjoo Kim (kyukim@sandia.gov), or
// Mauro Perego (mperego@sandia.gov)
//
// ************************************************************************
// @HEADER
/** \file
\brief Unit test (CubatureDirect,CubatureTensor):
correctness of volume computations for reference cells.
\author Created by P. Bochev, D. Ridzal and Kyungjoo Kim
*/
#include "Intrepid2_config.h"
#ifdef HAVE_INTREPID2_DEBUG
#define INTREPID2_TEST_FOR_DEBUG_ABORT_OVERRIDE_TO_CONTINUE
#endif
#include "Intrepid2_Types.hpp"
#include "Intrepid2_Utils.hpp"
#include "Intrepid2_CubatureDirectLineGauss.hpp"
#include "Intrepid2_CubatureTensor.hpp"
#include "Intrepid2_CubatureDirectLineGaussJacobi20.hpp"
#include "Intrepid2_CubatureDirectTriDefault.hpp"
#include "Intrepid2_CubatureDirectTetDefault.hpp"
#include "Intrepid2_CubatureTensorPyr.hpp"
#include "Teuchos_oblackholestream.hpp"
#include "Teuchos_RCP.hpp"
#include "test_util.hpp"
namespace Intrepid2 {
namespace Test {
#define INTREPID2_TEST_ERROR_EXPECTED( S ) \
try { \
++nthrow; \
S ; \
} catch (std::logic_error err) { \
++ncatch; \
*outStream << "Expected Error ----------------------------------------------------------------\n"; \
*outStream << err.what() << '\n'; \
*outStream << "-------------------------------------------------------------------------------" << "\n\n"; \
}; \
template<typename ValueType, typename DeviceSpaceType>
int Integration_Test01(const bool verbose) {
Teuchos::RCP<std::ostream> outStream;
Teuchos::oblackholestream bhs; // outputs nothing
if (verbose)
outStream = Teuchos::rcp(&std::cout, false);
else
outStream = Teuchos::rcp(&bhs, false);
Teuchos::oblackholestream oldFormatState;
oldFormatState.copyfmt(std::cout);
typedef typename
Kokkos::Impl::is_space<DeviceSpaceType>::host_mirror_space::execution_space HostSpaceType ;
*outStream << "DeviceSpace:: "; DeviceSpaceType::print_configuration(*outStream, false);
*outStream << "HostSpace:: "; HostSpaceType::print_configuration(*outStream, false);
*outStream
<< "===============================================================================\n"
<< "| |\n"
<< "| Unit Test (CubatureDirect,CubatureTensor) |\n"
<< "| |\n"
<< "| 1) Computing volumes of reference cells |\n"
<< "| |\n"
<< "| Questions? Contact Pavel Bochev (pbboche@sandia.gov) or |\n"
<< "| Denis Ridzal (dridzal@sandia.gov) or |\n"
<< "| Kyungjoo Kim (kyukim@sandia.gov). |\n"
<< "| |\n"
<< "| Intrepid's website: http://trilinos.sandia.gov/packages/intrepid |\n"
<< "| Trilinos website: http://trilinos.sandia.gov |\n"
<< "| |\n"
<< "===============================================================================\n";
typedef Kokkos::DynRankView<ValueType,DeviceSpaceType> DynRankView;
#define ConstructWithLabel(obj, ...) obj(#obj, __VA_ARGS__)
typedef ValueType pointValueType;
typedef ValueType weightValueType;
typedef CubatureDirectLineGauss <DeviceSpaceType,pointValueType,weightValueType> CubatureLineType;
typedef CubatureDirectLineGaussJacobi20<DeviceSpaceType,pointValueType,weightValueType> CubatureLineJacobiType;
typedef CubatureDirectTriDefault <DeviceSpaceType,pointValueType,weightValueType> CubatureTriType;
typedef CubatureDirectTetDefault <DeviceSpaceType,pointValueType,weightValueType> CubatureTetType;
typedef CubatureTensor <DeviceSpaceType,pointValueType,weightValueType> CubatureTensorType;
typedef CubatureTensorPyr <DeviceSpaceType,pointValueType,weightValueType> CubatureTensorPyrType;
const auto tol = 100.0 * tolerence();
int errorFlag = 0;
*outStream
<< "\n"
<< "===============================================================================\n"
<< "| TEST 1: exception |\n"
<< "===============================================================================\n";
try {
ordinal_type nthrow = 0, ncatch = 0;
#ifdef HAVE_INTREPID2_DEBUG
*outStream << "-> Line testing\n\n";
{
INTREPID2_TEST_ERROR_EXPECTED( CubatureLineType(-1) );
INTREPID2_TEST_ERROR_EXPECTED( CubatureLineType(Parameters::MaxCubatureDegreeEdge+1) );
}
*outStream << "-> Triangle testing\n\n";
{
INTREPID2_TEST_ERROR_EXPECTED( CubatureTriType triCub(-1) );
INTREPID2_TEST_ERROR_EXPECTED( CubatureTriType triCub(Parameters::MaxCubatureDegreeTri+1) );
}
*outStream << "-> Tetrahedron testing\n\n";
{
INTREPID2_TEST_ERROR_EXPECTED( CubatureTetType tetCub(-1) );
INTREPID2_TEST_ERROR_EXPECTED( CubatureTetType tetCub(Parameters::MaxCubatureDegreeTet+1) );
}
#endif
if (nthrow != ncatch) {
errorFlag++;
*outStream << std::setw(70) << "^^^^----FAILURE!" << "\n";
*outStream << "# of catch ("<< ncatch << ") is different from # of throw (" << ncatch << ")\n";
}
} catch (std::logic_error err) {
*outStream << err.what() << "\n";
errorFlag = -1000;
};
*outStream
<< "\n"
<< "===============================================================================\n"
<< "| TEST 2: basic functionalities |\n"
<< "===============================================================================\n";
try {
*outStream << "-> Line testing\n\n";
{
CubatureLineType lineCub(4);
INTREPID2_TEST_FOR_EXCEPTION( lineCub.getDimension() != 1, std::logic_error,
">>> ERROR (Integration::Test01): line cubature must have 1 dimension.");
INTREPID2_TEST_FOR_EXCEPTION( lineCub.getAccuracy() != 4, std::logic_error,
">>> ERROR (Integration::Test01): line cubature reports wrong accuracy.");
}
*outStream << "-> Triangle testing\n\n";
{
CubatureTriType triCub(17);
INTREPID2_TEST_FOR_EXCEPTION( triCub.getNumPoints() != 61, std::logic_error,
">>> ERROR (Integration::Test01): triangle cubature reports a wrong number of points.");
INTREPID2_TEST_FOR_EXCEPTION( triCub.getDimension() != 2, std::logic_error,
">>> ERROR (Integration::Test01): triangle cubature reports a wrong dimension.");
}
*outStream << "-> Tetrahedron testing\n\n";
{
CubatureTetType tetCub(17);
INTREPID2_TEST_FOR_EXCEPTION( tetCub.getNumPoints() != 495, std::logic_error,
">>> ERROR (Integration::Test01): tetrahedron cubature reports a wrong number of points.");
INTREPID2_TEST_FOR_EXCEPTION( tetCub.getDimension() != 3, std::logic_error,
">>> ERROR (Integration::Test01): tetrahedron cubature reports a wrong dimension.");
}
*outStream << "-> Quad testing\n\n";
{
CubatureTensorType quadCub( CubatureLineType(3), CubatureLineType(7) );
INTREPID2_TEST_FOR_EXCEPTION( quadCub.getDimension() != 2, std::logic_error,
">>> ERROR (Integration::Test01): quad cubature must have 2 dimension.");
ordinal_type accuracy[Parameters::MaxDimension];
quadCub.getAccuracy( accuracy );
INTREPID2_TEST_FOR_EXCEPTION( accuracy[0] != 3 || accuracy[1] != 7, std::logic_error,
">>> ERROR (Integration::Test01): quad cubature reports wrong accuracy.");
}
*outStream << "-> Hex testing\n\n";
{
CubatureTensorType hexCub( CubatureLineType(1), CubatureLineType(4), CubatureLineType(2) );
INTREPID2_TEST_FOR_EXCEPTION( hexCub.getDimension() != 3, std::logic_error,
">>> ERROR (Integration::Test01): hex cubature must have 3 dimension.");
ordinal_type accuracy[Parameters::MaxDimension];
hexCub.getAccuracy( accuracy );
INTREPID2_TEST_FOR_EXCEPTION( accuracy[0] != 1 || accuracy[1] != 4 || accuracy[2] != 2, std::logic_error,
">>> ERROR (Integration::Test01): hex cubature reports wrong accuracy.");
}
*outStream << "-> Prism testing\n\n";
{
CubatureTensorType prismCub( CubatureTriType(4), CubatureLineType(3) );
INTREPID2_TEST_FOR_EXCEPTION( prismCub.getDimension() != 3, std::logic_error,
">>> ERROR (Integration::Test01): prism cubature must have 3 dimension.");
ordinal_type accuracy[Parameters::MaxDimension];
prismCub.getAccuracy( accuracy );
INTREPID2_TEST_FOR_EXCEPTION( accuracy[0] != 4 || accuracy[1] != 3, std::logic_error,
">>> ERROR (Integration::Test01): prism cubature reports wrong accuracy.");
}
} catch (std::logic_error err) {
*outStream << err.what() << "\n";
errorFlag = -1000;
};
*outStream
<< "===============================================================================\n"
<< "| TEST 3: volume computations |\n"
<< "===============================================================================\n";
try {
DynRankView ConstructWithLabel(cubPoints, Parameters::MaxIntegrationPoints, Parameters::MaxDimension);
DynRankView ConstructWithLabel(cubWeights, Parameters::MaxIntegrationPoints);
*outStream << "-> Line testing\n\n";
{
for (ordinal_type deg=0;deg<=Parameters::MaxCubatureDegreeEdge;++deg) {
CubatureLineType cub(deg);
cub.getCubature(cubPoints, cubWeights);
const auto npts = cub.getNumPoints();
const auto testVol = computeRefVolume(npts, cubWeights);
const auto refVol = 2.0;
if (std::abs(testVol - refVol) > tol) {
*outStream << std::setw(30) << "Line volume --> " << std::setw(10) << std::scientific << testVol <<
std::setw(10) << "diff = " << std::setw(10) << std::scientific << std::abs(testVol - refVol) << "\n";
++errorFlag;
*outStream << std::setw(70) << "^^^^----FAILURE!" << "\n";
}
}
}
*outStream << "-> Triangle testing\n\n";
{
for (auto deg=0;deg<=Parameters::MaxCubatureDegreeTri;++deg) {
CubatureTriType cub(deg);
cub.getCubature(cubPoints, cubWeights);
const auto npts = cub.getNumPoints();
const auto testVol = computeRefVolume(npts, cubWeights);
const auto refVol = 0.5;
if (std::abs(testVol - refVol) > tol) {
*outStream << std::setw(30) << "Triangle volume --> " << std::setw(10) << std::scientific << testVol <<
std::setw(10) << "diff = " << std::setw(10) << std::scientific << std::abs(testVol - refVol) << "\n";
++errorFlag;
*outStream << std::setw(70) << "^^^^----FAILURE!" << "\n";
}
}
}
*outStream << "-> Quad testing\n\n";
{
for (ordinal_type y_deg=0;y_deg<=Parameters::MaxCubatureDegreeEdge;++y_deg)
for (ordinal_type x_deg=0;x_deg<=Parameters::MaxCubatureDegreeEdge;++x_deg) {
const auto x_line = CubatureLineType(x_deg);
const auto y_line = CubatureLineType(y_deg);
CubatureTensorType cub( x_line, y_line );
cub.getCubature(cubPoints, cubWeights);
const auto npts = cub.getNumPoints();
const auto testVol = computeRefVolume(npts, cubWeights);
const auto refVol = 4.0;
if (std::abs(testVol - refVol) > tol) {
*outStream << std::setw(30) << "Quadrilateral volume --> " << std::setw(10) << std::scientific << testVol <<
std::setw(10) << "diff = " << std::setw(10) << std::scientific << std::abs(testVol - refVol) << "\n";
++errorFlag;
*outStream << std::setw(70) << "^^^^----FAILURE!" << "\n";
}
}
}
*outStream << "-> Tetrahedron testing\n\n";
{
for (auto deg=0;deg<=Parameters::MaxCubatureDegreeTet;++deg) {
CubatureTetType cub(deg);
cub.getCubature(cubPoints, cubWeights);
const auto npts = cub.getNumPoints();
const auto testVol = computeRefVolume(npts, cubWeights);
const auto refVol = 1.0/6.0;
if (std::abs(testVol - refVol) > tol) {
*outStream << std::setw(30) << "Tetrahedron volume --> " << std::setw(10) << std::scientific << testVol <<
std::setw(10) << "diff = " << std::setw(10) << std::scientific << std::abs(testVol - refVol) << "\n";
++errorFlag;
*outStream << std::setw(70) << "^^^^----FAILURE!" << "\n";
}
}
}
*outStream << "-> Hexahedron testing\n\n";
{
// when hex is tested with max cubature degree edge, it exceeds max integration points 1001
for (ordinal_type z_deg=0;z_deg<Parameters::MaxCubatureDegreeEdge;++z_deg)
for (ordinal_type y_deg=0;y_deg<Parameters::MaxCubatureDegreeEdge;++y_deg)
for (ordinal_type x_deg=0;x_deg<Parameters::MaxCubatureDegreeEdge;++x_deg) {
const auto x_line = CubatureLineType(x_deg);
const auto y_line = CubatureLineType(y_deg);
const auto z_line = CubatureLineType(z_deg);
CubatureTensorType cub( x_line, y_line, z_line );
cub.getCubature(cubPoints, cubWeights);
const auto npts = cub.getNumPoints();
const auto testVol = computeRefVolume(npts, cubWeights);
const auto refVol = 8.0;
if (std::abs(testVol - refVol) > tol) {
*outStream << std::setw(30) << "Hexahedron volume --> " << std::setw(10) << std::scientific << testVol <<
std::setw(10) << "diff = " << std::setw(10) << std::scientific << std::abs(testVol - refVol) << "\n";
++errorFlag;
*outStream << std::setw(70) << "^^^^----FAILURE!" << "\n";
}
}
}
*outStream << "-> Prism testing\n\n";
{
for (auto z_deg=0;z_deg<Parameters::MaxCubatureDegreeEdge;++z_deg)
for (auto xy_deg=0;xy_deg<Parameters::MaxCubatureDegreeTri;++xy_deg) {
const auto xy_tri = CubatureTriType(xy_deg);
const auto z_line = CubatureLineType(z_deg);
CubatureTensorType cub( xy_tri, z_line );
cub.getCubature(cubPoints, cubWeights);
const auto npts = cub.getNumPoints();
const auto testVol = computeRefVolume(npts, cubWeights);
const auto refVol = 1.0;
if (std::abs(testVol - refVol) > tol) {
*outStream << std::setw(30) << "Wedge volume --> " << std::setw(10) << std::scientific << testVol <<
std::setw(10) << "diff = " << std::setw(10) << std::scientific << std::abs(testVol - refVol) << "\n";
++errorFlag;
*outStream << std::setw(70) << "^^^^----FAILURE!" << "\n";
}
}
}
*outStream << "-> Pyramid testing: over-integration by 2 (due to duffy transformation) \n\n";
{
for (auto deg=0;deg<=Parameters::MaxCubatureDegreePyr;++deg) {
const auto xy_line = CubatureLineType(deg);
const auto z_line = CubatureLineJacobiType(deg);
CubatureTensorPyrType cub( xy_line, xy_line, z_line );
cub.getCubature(cubPoints, cubWeights);
const auto npts = cub.getNumPoints();
const auto testVol = computeRefVolume(npts, cubWeights);
const auto refVol = 4.0/3.0;
if (std::abs(testVol - refVol) > tol) {
*outStream << std::setw(30) << "Pyramid volume --> " << std::setw(10) << std::scientific << testVol <<
std::setw(10) << "diff = " << std::setw(10) << std::scientific << std::abs(testVol - refVol) << "\n";
++errorFlag;
*outStream << std::setw(70) << "^^^^----FAILURE!" << "\n";
}
}
}
*outStream << "-> Hypercube testing\n\n";
// later.... refVol = 32
// for (int deg=0; deg<=20; deg++) {
// Teuchos::RCP<CubatureLineType > lineCub = Teuchos::rcp(new CubatureLineType(deg));
// CubatureTensorType hypercubeCub(lineCub, 5);
// int numCubPoints = hypercubeCub.getNumPoints();
// FieldContainer<DeviceSpaceType> cubPoints( numCubPoints, hypercubeCub.getDimension() );
// FieldContainer<DeviceSpaceType> cubWeights( numCubPoints );
// hypercubeCub.getCubature(cubPoints, cubWeights);
// testVol = 0;
// for (int i=0; i<numCubPoints; i++)
// testVol += cubWeights(i);
// *outStream << std::setw(30) << "5-D Hypercube volume --> " << std::setw(10) << std::scientific << testVol <<
// std::setw(10) << "diff = " << std::setw(10) << std::scientific << std::abs(testVol - volumeList[8]) << "\n";
// if (std::abs(testVol - volumeList[8])/std::abs(testVol) > tol) {
// errorFlag = 1;
// *outStream << std::setw(70) << "^^^^----FAILURE!" << "\n";
// }
// }
} catch (std::logic_error err) {
*outStream << err.what() << "\n";
errorFlag = -1;
};
if (errorFlag != 0)
std::cout << "End Result: TEST FAILED\n";
else
std::cout << "End Result: TEST PASSED\n";
// reset format state of std::cout
std::cout.copyfmt(oldFormatState);
Kokkos::finalize();
return errorFlag;
}
} // end of namespace test
} // end of namespace intrepid2
|