File: test_01.hpp

package info (click to toggle)
trilinos 12.18.1-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 825,604 kB
  • sloc: cpp: 3,352,065; ansic: 432,926; fortran: 169,495; xml: 61,903; python: 40,836; sh: 32,697; makefile: 26,612; javascript: 8,535; perl: 7,136; f90: 6,372; csh: 4,183; objc: 2,620; lex: 1,469; lisp: 810; yacc: 497; awk: 364; ml: 281; php: 145
file content (454 lines) | stat: -rw-r--r-- 21,434 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
// @HEADER
// ************************************************************************
//
//                           Intrepid2 Package
//                 Copyright (2007) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Kyungjoo Kim  (kyukim@sandia.gov), or
//                    Mauro Perego  (mperego@sandia.gov)
//
// ************************************************************************
// @HEADER


/** \file
    \brief  Unit test (CubatureDirect,CubatureTensor):
            correctness of volume computations for reference cells.
    \author Created by P. Bochev, D. Ridzal and Kyungjoo Kim
*/

#include "Intrepid2_config.h"

#ifdef HAVE_INTREPID2_DEBUG
#define INTREPID2_TEST_FOR_DEBUG_ABORT_OVERRIDE_TO_CONTINUE
#endif

#include "Intrepid2_Types.hpp"
#include "Intrepid2_Utils.hpp"

#include "Intrepid2_CubatureDirectLineGauss.hpp"
#include "Intrepid2_CubatureTensor.hpp"

#include "Intrepid2_CubatureDirectLineGaussJacobi20.hpp"
#include "Intrepid2_CubatureDirectTriDefault.hpp"
#include "Intrepid2_CubatureDirectTetDefault.hpp"
#include "Intrepid2_CubatureTensorPyr.hpp"

#include "Teuchos_oblackholestream.hpp"
#include "Teuchos_RCP.hpp"

#include "test_util.hpp"

namespace Intrepid2 {

  namespace Test {
#define INTREPID2_TEST_ERROR_EXPECTED( S )              \
    try {                                                               \
      ++nthrow;                                                         \
      S ;                                                               \
    } catch (std::logic_error err) {                                    \
      ++ncatch;                                                         \
      *outStream << "Expected Error ----------------------------------------------------------------\n"; \
      *outStream << err.what() << '\n';                                 \
      *outStream << "-------------------------------------------------------------------------------" << "\n\n"; \
    };                                                                  \

    template<typename ValueType, typename DeviceSpaceType>
    int Integration_Test01(const bool verbose) {

      Teuchos::RCP<std::ostream> outStream;
      Teuchos::oblackholestream bhs; // outputs nothing

      if (verbose)
        outStream = Teuchos::rcp(&std::cout, false);
      else
        outStream = Teuchos::rcp(&bhs, false);

      Teuchos::oblackholestream oldFormatState;
      oldFormatState.copyfmt(std::cout);

      typedef typename
        Kokkos::Impl::is_space<DeviceSpaceType>::host_mirror_space::execution_space HostSpaceType ;

      *outStream << "DeviceSpace::  "; DeviceSpaceType::print_configuration(*outStream, false);
      *outStream << "HostSpace::    ";   HostSpaceType::print_configuration(*outStream, false);

      *outStream
        << "===============================================================================\n"
        << "|                                                                             |\n"
        << "|                  Unit Test (CubatureDirect,CubatureTensor)                  |\n"
        << "|                                                                             |\n"
        << "|     1) Computing volumes of reference cells                                 |\n"
        << "|                                                                             |\n"
        << "|  Questions? Contact  Pavel Bochev (pbboche@sandia.gov) or                   |\n"
        << "|                      Denis Ridzal (dridzal@sandia.gov) or                   |\n"
        << "|                      Kyungjoo Kim (kyukim@sandia.gov).                      |\n"
        << "|                                                                             |\n"
        << "|  Intrepid's website: http://trilinos.sandia.gov/packages/intrepid           |\n"
        << "|  Trilinos website:   http://trilinos.sandia.gov                             |\n"
        << "|                                                                             |\n"
        << "===============================================================================\n";

      typedef Kokkos::DynRankView<ValueType,DeviceSpaceType> DynRankView;
#define ConstructWithLabel(obj, ...) obj(#obj, __VA_ARGS__)

      typedef ValueType pointValueType;
      typedef ValueType weightValueType;
      typedef CubatureDirectLineGauss        <DeviceSpaceType,pointValueType,weightValueType> CubatureLineType;
      typedef CubatureDirectLineGaussJacobi20<DeviceSpaceType,pointValueType,weightValueType> CubatureLineJacobiType;
      typedef CubatureDirectTriDefault       <DeviceSpaceType,pointValueType,weightValueType> CubatureTriType;
      typedef CubatureDirectTetDefault       <DeviceSpaceType,pointValueType,weightValueType> CubatureTetType;
      typedef CubatureTensor                 <DeviceSpaceType,pointValueType,weightValueType> CubatureTensorType;
      typedef CubatureTensorPyr              <DeviceSpaceType,pointValueType,weightValueType> CubatureTensorPyrType;

      const auto tol = 100.0 * tolerence();

      int errorFlag  = 0;

      *outStream
        << "\n"
        << "===============================================================================\n"
        << "| TEST 1: exception                                                           |\n"
        << "===============================================================================\n";

      try {
        ordinal_type nthrow = 0, ncatch = 0;
#ifdef HAVE_INTREPID2_DEBUG
        *outStream << "-> Line testing\n\n";
        {
          INTREPID2_TEST_ERROR_EXPECTED( CubatureLineType(-1) );
          INTREPID2_TEST_ERROR_EXPECTED( CubatureLineType(Parameters::MaxCubatureDegreeEdge+1) );
        }

        *outStream << "-> Triangle testing\n\n";
        {
          INTREPID2_TEST_ERROR_EXPECTED( CubatureTriType triCub(-1) );
          INTREPID2_TEST_ERROR_EXPECTED( CubatureTriType triCub(Parameters::MaxCubatureDegreeTri+1) );
        }

        *outStream << "-> Tetrahedron testing\n\n";
        {
          INTREPID2_TEST_ERROR_EXPECTED( CubatureTetType tetCub(-1) );
          INTREPID2_TEST_ERROR_EXPECTED( CubatureTetType tetCub(Parameters::MaxCubatureDegreeTet+1) );
        }
#endif
        if (nthrow != ncatch) {
          errorFlag++;
          *outStream << std::setw(70) << "^^^^----FAILURE!" << "\n";
          *outStream << "# of catch ("<< ncatch << ") is different from # of throw (" << ncatch << ")\n";
        }

      } catch (std::logic_error err) {
        *outStream << err.what() << "\n";
        errorFlag = -1000;
      };


      *outStream
        << "\n"
        << "===============================================================================\n"
        << "| TEST 2: basic functionalities                                               |\n"
        << "===============================================================================\n";

      try {

        *outStream << "-> Line testing\n\n";
        {
          CubatureLineType lineCub(4);
          INTREPID2_TEST_FOR_EXCEPTION( lineCub.getDimension() != 1, std::logic_error,
                                        ">>> ERROR (Integration::Test01): line cubature must have 1 dimension.");
          INTREPID2_TEST_FOR_EXCEPTION( lineCub.getAccuracy() != 4, std::logic_error,
                                        ">>> ERROR (Integration::Test01): line cubature reports wrong accuracy.");
        }

        *outStream << "-> Triangle testing\n\n";
        {
          CubatureTriType triCub(17);
          INTREPID2_TEST_FOR_EXCEPTION( triCub.getNumPoints() != 61, std::logic_error,
                                        ">>> ERROR (Integration::Test01): triangle cubature reports a wrong number of points.");
          INTREPID2_TEST_FOR_EXCEPTION( triCub.getDimension() != 2, std::logic_error,
                                        ">>> ERROR (Integration::Test01): triangle cubature reports a wrong dimension.");
        }

        *outStream << "-> Tetrahedron testing\n\n";
        {
          CubatureTetType tetCub(17);
          INTREPID2_TEST_FOR_EXCEPTION( tetCub.getNumPoints() != 495, std::logic_error,
                                        ">>> ERROR (Integration::Test01): tetrahedron cubature reports a wrong number of points.");
          INTREPID2_TEST_FOR_EXCEPTION( tetCub.getDimension() != 3, std::logic_error,
                                        ">>> ERROR (Integration::Test01): tetrahedron cubature reports a wrong dimension.");
        }

        *outStream << "-> Quad testing\n\n";
        {
          CubatureTensorType quadCub( CubatureLineType(3), CubatureLineType(7) );

          INTREPID2_TEST_FOR_EXCEPTION( quadCub.getDimension() != 2, std::logic_error,
                                        ">>> ERROR (Integration::Test01): quad cubature must have 2 dimension.");

          ordinal_type accuracy[Parameters::MaxDimension];
          quadCub.getAccuracy( accuracy );
          INTREPID2_TEST_FOR_EXCEPTION( accuracy[0] != 3 || accuracy[1] != 7, std::logic_error,
                                        ">>> ERROR (Integration::Test01): quad cubature reports wrong accuracy.");

        }

        *outStream << "-> Hex testing\n\n";
        {
          CubatureTensorType hexCub( CubatureLineType(1), CubatureLineType(4), CubatureLineType(2) );

          INTREPID2_TEST_FOR_EXCEPTION( hexCub.getDimension() != 3, std::logic_error,
                                        ">>> ERROR (Integration::Test01): hex cubature must have 3 dimension.");

          ordinal_type accuracy[Parameters::MaxDimension];
          hexCub.getAccuracy( accuracy );
          INTREPID2_TEST_FOR_EXCEPTION( accuracy[0] != 1 || accuracy[1] != 4 || accuracy[2] != 2, std::logic_error,
                                        ">>> ERROR (Integration::Test01): hex cubature reports wrong accuracy.");
        }

        *outStream << "-> Prism testing\n\n";
        {
          CubatureTensorType prismCub( CubatureTriType(4), CubatureLineType(3) );

          INTREPID2_TEST_FOR_EXCEPTION( prismCub.getDimension() != 3, std::logic_error,
                                        ">>> ERROR (Integration::Test01): prism cubature must have 3 dimension.");

          ordinal_type accuracy[Parameters::MaxDimension];
          prismCub.getAccuracy( accuracy );
          INTREPID2_TEST_FOR_EXCEPTION( accuracy[0] != 4 || accuracy[1] != 3, std::logic_error,
                                        ">>> ERROR (Integration::Test01): prism cubature reports wrong accuracy.");
        }

      } catch (std::logic_error err) {
        *outStream << err.what() << "\n";
        errorFlag = -1000;
      };

      *outStream
        << "===============================================================================\n"
        << "| TEST 3: volume computations                                                 |\n"
        << "===============================================================================\n";

      try {

        DynRankView ConstructWithLabel(cubPoints,  Parameters::MaxIntegrationPoints, Parameters::MaxDimension);
        DynRankView ConstructWithLabel(cubWeights, Parameters::MaxIntegrationPoints);

        *outStream << "-> Line testing\n\n";
        {
          for (ordinal_type deg=0;deg<=Parameters::MaxCubatureDegreeEdge;++deg) {
            CubatureLineType cub(deg);
            cub.getCubature(cubPoints, cubWeights);
            const auto npts = cub.getNumPoints();

            const auto testVol = computeRefVolume(npts, cubWeights);
            const auto refVol  = 2.0;
            if (std::abs(testVol - refVol) > tol) {
              *outStream << std::setw(30) << "Line volume --> " << std::setw(10) << std::scientific << testVol <<
                std::setw(10) << "diff = " << std::setw(10) << std::scientific << std::abs(testVol - refVol) << "\n";
              ++errorFlag;
              *outStream << std::setw(70) << "^^^^----FAILURE!" << "\n";
            }
          }
        }

        *outStream << "-> Triangle testing\n\n";
        {
          for (auto deg=0;deg<=Parameters::MaxCubatureDegreeTri;++deg) {
            CubatureTriType cub(deg);
            cub.getCubature(cubPoints, cubWeights);
            const auto npts = cub.getNumPoints();

            const auto testVol = computeRefVolume(npts, cubWeights);
            const auto refVol  = 0.5;
            if (std::abs(testVol - refVol) > tol) {
              *outStream << std::setw(30) << "Triangle volume --> " << std::setw(10) << std::scientific << testVol <<
                std::setw(10) << "diff = " << std::setw(10) << std::scientific << std::abs(testVol - refVol) << "\n";
              ++errorFlag;
              *outStream << std::setw(70) << "^^^^----FAILURE!" << "\n";
            }
          }
        }

        *outStream << "-> Quad testing\n\n";
        {
          for (ordinal_type y_deg=0;y_deg<=Parameters::MaxCubatureDegreeEdge;++y_deg)
            for (ordinal_type x_deg=0;x_deg<=Parameters::MaxCubatureDegreeEdge;++x_deg) {
              const auto x_line = CubatureLineType(x_deg);
              const auto y_line = CubatureLineType(y_deg);
              CubatureTensorType cub( x_line, y_line );

              cub.getCubature(cubPoints, cubWeights);
              const auto npts = cub.getNumPoints();

              const auto testVol = computeRefVolume(npts, cubWeights);
              const auto refVol  = 4.0;
              if (std::abs(testVol - refVol) > tol) {
                *outStream << std::setw(30) << "Quadrilateral volume --> " << std::setw(10) << std::scientific << testVol <<
                  std::setw(10) << "diff = " << std::setw(10) << std::scientific << std::abs(testVol - refVol) << "\n";

                ++errorFlag;
                *outStream << std::setw(70) << "^^^^----FAILURE!" << "\n";
              }
            }
        }
        
        *outStream << "-> Tetrahedron testing\n\n";
        {
          for (auto deg=0;deg<=Parameters::MaxCubatureDegreeTet;++deg) {
            CubatureTetType cub(deg);
            
            cub.getCubature(cubPoints, cubWeights);
            const auto npts = cub.getNumPoints();
            
            const auto testVol = computeRefVolume(npts, cubWeights);
            const auto refVol  = 1.0/6.0;
            if (std::abs(testVol - refVol) > tol) {
              *outStream << std::setw(30) << "Tetrahedron volume --> " << std::setw(10) << std::scientific << testVol <<
                std::setw(10) << "diff = " << std::setw(10) << std::scientific << std::abs(testVol - refVol) << "\n";
              
              ++errorFlag;
              *outStream << std::setw(70) << "^^^^----FAILURE!" << "\n";
            }
          }
        }
        
        *outStream << "-> Hexahedron testing\n\n";
        {
          // when hex is tested with max cubature degree edge, it exceeds max integration points 1001
          for (ordinal_type z_deg=0;z_deg<Parameters::MaxCubatureDegreeEdge;++z_deg)
            for (ordinal_type y_deg=0;y_deg<Parameters::MaxCubatureDegreeEdge;++y_deg)
              for (ordinal_type x_deg=0;x_deg<Parameters::MaxCubatureDegreeEdge;++x_deg) {
                const auto x_line = CubatureLineType(x_deg);
                const auto y_line = CubatureLineType(y_deg);
                const auto z_line = CubatureLineType(z_deg);
                CubatureTensorType cub( x_line, y_line, z_line );

                cub.getCubature(cubPoints, cubWeights);
                const auto npts = cub.getNumPoints();

                const auto testVol = computeRefVolume(npts, cubWeights);
                const auto refVol  = 8.0;
                if (std::abs(testVol - refVol) > tol) {
                  *outStream << std::setw(30) << "Hexahedron volume --> " << std::setw(10) << std::scientific << testVol <<
                    std::setw(10) << "diff = " << std::setw(10) << std::scientific << std::abs(testVol - refVol) << "\n";

                  ++errorFlag;
                  *outStream << std::setw(70) << "^^^^----FAILURE!" << "\n";
                }
              }
        }

        *outStream << "-> Prism testing\n\n";
        {
          for (auto z_deg=0;z_deg<Parameters::MaxCubatureDegreeEdge;++z_deg)
            for (auto xy_deg=0;xy_deg<Parameters::MaxCubatureDegreeTri;++xy_deg) {
              const auto xy_tri = CubatureTriType(xy_deg);
              const auto z_line = CubatureLineType(z_deg);
              CubatureTensorType cub( xy_tri, z_line );
              
              cub.getCubature(cubPoints, cubWeights);
              const auto npts = cub.getNumPoints();
              
              const auto testVol = computeRefVolume(npts, cubWeights);
              const auto refVol  = 1.0;
              if (std::abs(testVol - refVol) > tol) {
                *outStream << std::setw(30) << "Wedge volume --> " << std::setw(10) << std::scientific << testVol <<
                  std::setw(10) << "diff = " << std::setw(10) << std::scientific << std::abs(testVol - refVol) << "\n";
                ++errorFlag;
                *outStream << std::setw(70) << "^^^^----FAILURE!" << "\n";
              }
            }
        }
        
        *outStream << "-> Pyramid testing: over-integration by 2 (due to duffy transformation) \n\n";
        {
          for (auto deg=0;deg<=Parameters::MaxCubatureDegreePyr;++deg) {
            const auto xy_line = CubatureLineType(deg);
            const auto z_line  = CubatureLineJacobiType(deg);
            CubatureTensorPyrType cub( xy_line, xy_line, z_line );
            cub.getCubature(cubPoints, cubWeights);
            const auto npts = cub.getNumPoints();
            
            const auto testVol = computeRefVolume(npts, cubWeights);
            const auto refVol  = 4.0/3.0;
            if (std::abs(testVol - refVol) > tol) {              
              *outStream << std::setw(30) << "Pyramid volume --> " << std::setw(10) << std::scientific << testVol <<
                std::setw(10) << "diff = " << std::setw(10) << std::scientific << std::abs(testVol - refVol) << "\n";
              
              ++errorFlag;
              *outStream << std::setw(70) << "^^^^----FAILURE!" << "\n";
            }
          }
        }

        *outStream << "-> Hypercube testing\n\n";
        // later.... refVol = 32
        // for (int deg=0; deg<=20; deg++) {
        //   Teuchos::RCP<CubatureLineType > lineCub = Teuchos::rcp(new CubatureLineType(deg));
        //   CubatureTensorType hypercubeCub(lineCub, 5);
        //   int numCubPoints = hypercubeCub.getNumPoints();
        //   FieldContainer<DeviceSpaceType> cubPoints( numCubPoints, hypercubeCub.getDimension() );
        //   FieldContainer<DeviceSpaceType> cubWeights( numCubPoints );
        //   hypercubeCub.getCubature(cubPoints, cubWeights);
        //   testVol = 0;
        //   for (int i=0; i<numCubPoints; i++)
        //     testVol += cubWeights(i);
        //   *outStream << std::setw(30) << "5-D Hypercube volume --> " << std::setw(10) << std::scientific << testVol <<
        //     std::setw(10) << "diff = " << std::setw(10) << std::scientific << std::abs(testVol - volumeList[8]) << "\n";
        //   if (std::abs(testVol - volumeList[8])/std::abs(testVol) > tol) {
        //     errorFlag = 1;
        //     *outStream << std::setw(70) << "^^^^----FAILURE!" << "\n";
        //   }
        // }
      }  catch (std::logic_error err) {
        *outStream << err.what() << "\n";
        errorFlag = -1;
      };


      if (errorFlag != 0)
        std::cout << "End Result: TEST FAILED\n";
      else
        std::cout << "End Result: TEST PASSED\n";

      // reset format state of std::cout
      std::cout.copyfmt(oldFormatState);
      Kokkos::finalize();
      return errorFlag;
    }



  } // end of namespace test
} // end of namespace intrepid2