1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636
|
// @HEADER
//
// ***********************************************************************
//
// Xpetra: A linear algebra interface package
// Copyright 2012 Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact
// Jonathan Hu (jhu@sandia.gov)
// Andrey Prokopenko (aprokop@sandia.gov)
// Ray Tuminaro (rstumin@sandia.gov)
//
// ***********************************************************************
//
// @HEADER
#include <Teuchos_UnitTestHarness.hpp>
#include <Xpetra_UnitTestHelpers.hpp>
#include <Teuchos_Array.hpp>
#include <Teuchos_as.hpp>
#include <Teuchos_SerialDenseMatrix.hpp>
#include <Teuchos_Tuple.hpp>
#include <Teuchos_ScalarTraits.hpp>
#include <Teuchos_OrdinalTraits.hpp>
#include <Teuchos_TypeTraits.hpp>
#include <Teuchos_Comm.hpp>
#include <Teuchos_Range1D.hpp>
#ifdef HAVE_XPETRA_TPETRA
# include "Tpetra_Core.hpp"
# include "Tpetra_Map.hpp"
# include "Xpetra_TpetraMultiVector.hpp"
# include "Xpetra_TpetraVector.hpp"
#endif
#ifdef HAVE_XPETRA_EPETRA
# include "Xpetra_EpetraMap.hpp"
# include "Xpetra_EpetraMultiVector.hpp"
# include "Xpetra_EpetraVector.hpp"
#endif // HAVE_XPETRA_EPETRA
#include "Xpetra_MapFactory.hpp"
#include "Xpetra_MultiVectorFactory.hpp" // taw: include MultiVectorFactory before VectorFactory (for BlockedMultiVector definition)
#include "Xpetra_VectorFactory.hpp"
#include "Xpetra_MapExtractor.hpp"
#include "Xpetra_ConfigDefs.hpp"
#include "Xpetra_DefaultPlatform.hpp"
// FINISH: add test for MultiVector with a node containing zero local entries
// FINISH: add tests for local MultiVectors
namespace Teuchos {
template <>
ScalarTraits<int>::magnitudeType
relErr( const int &s1, const int &s2 ) {
typedef ScalarTraits<int> ST;
return ST::magnitude(s1-s2);
}
template <>
ScalarTraits<char>::magnitudeType
relErr( const char &s1, const char &s2 ) {
typedef ScalarTraits<char> ST;
return ST::magnitude(s1-s2);
}
}
namespace {
using std::endl;
using std::copy;
using std::ostream_iterator;
using std::string;
using Teuchos::TypeTraits::is_same;
using Teuchos::RCP;
using Teuchos::ArrayRCP;
using Teuchos::rcp;
using Teuchos::null;
using Teuchos::Array;
using Teuchos::ArrayView;
using Teuchos::Comm;
using Teuchos::SerialDenseMatrix;
using Teuchos::Range1D;
using Teuchos::Tuple;
using Teuchos::as;
using Teuchos::OrdinalTraits;
using Teuchos::ScalarTraits;
using Teuchos::arrayView;
using Teuchos::tuple;
using Teuchos::NO_TRANS;
using Teuchos::TRANS;
using Teuchos::CONJ_TRANS;
using Teuchos::VERB_DEFAULT;
using Teuchos::VERB_NONE;
using Teuchos::VERB_LOW;
using Teuchos::VERB_MEDIUM;
using Teuchos::VERB_HIGH;
using Teuchos::VERB_EXTREME;
// using Tpetra::Map;
// using Tpetra::MultiVector;
using Xpetra::global_size_t;
using Xpetra::DefaultPlatform;
using Xpetra::GloballyDistributed;
// using Tpetra::createContigMapWithNode;
// using Tpetra::createLocalMapWithNode;
#ifdef HAVE_XPETRA_TPETRA
using Xpetra::useTpetra::createContigMapWithNode;
using Xpetra::useTpetra::createLocalMapWithNode;
#endif
bool testMpi = true;
double errorTolSlack = 1.0e+2;
TEUCHOS_STATIC_SETUP()
{
Teuchos::CommandLineProcessor &clp = Teuchos::UnitTestRepository::getCLP();
clp.addOutputSetupOptions(true);
clp.setOption(
"test-mpi", "test-serial", &testMpi,
"Test MPI (if available) or force test of serial. In a serial build,"
" this option is ignored and a serial comm is always used." );
clp.setOption(
"error-tol-slack", &errorTolSlack,
"Slack off of machine epsilon used to check test results" );
}
RCP<const Comm<int> > getDefaultComm()
{
RCP<const Comm<int> > ret;
if (testMpi) {
ret = DefaultPlatform::getDefaultPlatform().getComm();
}
else {
ret = rcp(new Teuchos::SerialComm<int>());
}
return ret;
}
//
// UNIT TESTS
//
TEUCHOS_UNIT_TEST_TEMPLATE_7_DECL( MultiVector, GetVector, M, MV, V, Scalar, LocalOrdinal, GlobalOrdinal, Node )
{
typedef LocalOrdinal LO;
typedef GlobalOrdinal GO;
typedef Scalar scalar_type;
typedef Xpetra::Map<LO, GO, Node> map_type;
typedef Xpetra::MapFactory<LO, GO, Node> map_factory_type;
typedef Xpetra::MultiVector<Scalar, LO, GO, Node> mv_type;
typedef Xpetra::Vector<Scalar, LO, GO, Node> vec_type;
typedef Xpetra::MultiVectorFactory<Scalar, LO, GO, Node> mv_factory_type;
typedef Teuchos::ScalarTraits<Scalar> STS;
typedef typename STS::magnitudeType magnitude_type;
typedef Teuchos::ScalarTraits<magnitude_type> STM;
RCP<const Comm<int> > comm = getDefaultComm ();
EXTRACT_LIB(comm,M) // returns mylib
const size_t numVecs = 11;
// Create a Map for the MultiVector X, and create X.
const LO numInd = 63;
RCP<const map_type> map = map_factory_type::Build (mylib, numInd, 0, comm);
RCP<mv_type> X = mv_factory_type::Build (map, numVecs);
X->putScalar (STS::zero ());
// Make sure that X has the correct number of columns.
TEST_EQUALITY( X->getNumVectors (), numVecs );
// Fill all entries of the j-th column of X with the value j.
// Use X->getVectorNonConst(j) to get the j-th column of X.
for (size_t j = 0; j < numVecs; ++j) {
RCP<vec_type> X_j = X->getVectorNonConst (j);
X_j->putScalar (as<scalar_type> (j));
}
const size_t numRows = map->getGlobalNumElements ();
const magnitude_type normTol = as<magnitude_type> (numRows) * STM::eps ();
Teuchos::Array<magnitude_type> correctNorms (numVecs);
Teuchos::Array<magnitude_type> allAtOnceNorms (numVecs);
Teuchos::Array<magnitude_type> oneAtATimeNorms (numVecs);
// Calculate what the 2-norm of each column of X should be.
for (size_t j = 0; j < numVecs; ++j) {
correctNorms[j] = as<magnitude_type> (j) *
STM::squareroot (as<magnitude_type> (numRows));
}
// Fill the Array with zeros, and use X->norm2(ArrayView) to
// compute the 2-norm of each column of X. Test the results.
std::fill (allAtOnceNorms.begin (), allAtOnceNorms.end (), STM::zero ());
X->norm2 (allAtOnceNorms);
TEST_COMPARE_FLOATING_ARRAYS( correctNorms (), allAtOnceNorms (), normTol );
// Use X_j->norm2() to compute the 2-norm of each column of X, and
// use X->getVector(j) to get X_j. Test the resulting norms.
for (size_t j = 0; j < numVecs; ++j) {
RCP<const vec_type> X_j = X->getVector (j);
oneAtATimeNorms[j] = X_j->norm2 ();
}
TEST_COMPARE_FLOATING_ARRAYS( correctNorms (), oneAtATimeNorms (), normTol );
// Calculate what the 1-norm of each column of X should be.
for (size_t j = 0; j < numVecs; ++j) {
correctNorms[j] = as<magnitude_type> (j) * as<magnitude_type> (numRows);
}
// Fill the Array with zeros, and use X->norm1(ArrayView) to
// compute the 1-norm of each column of X. Test the results.
std::fill (allAtOnceNorms.begin (), allAtOnceNorms.end (), STM::zero ());
X->norm1 (allAtOnceNorms);
TEST_COMPARE_FLOATING_ARRAYS( correctNorms (), allAtOnceNorms (), normTol );
// Use X_j->norm1() to compute the 1-norm of each column of X, and
// use X->getVector(j) to get X_j. Test the resulting norms.
for (size_t j = 0; j < numVecs; ++j) {
RCP<const vec_type> X_j = X->getVector (j);
oneAtATimeNorms[j] = X_j->norm1 ();
}
TEST_COMPARE_FLOATING_ARRAYS( correctNorms (), oneAtATimeNorms (), normTol );
// Calculate what the inf-norm of each column of X should be.
for (size_t j = 0; j < numVecs; ++j) {
correctNorms[j] = as<magnitude_type> (j);
}
// Fill the Array with zeros, and use X->normInf(ArrayView) to
// compute the inf-norm of each column of X. Test the results.
std::fill (allAtOnceNorms.begin (), allAtOnceNorms.end (), STM::zero ());
X->normInf (allAtOnceNorms);
TEST_COMPARE_FLOATING_ARRAYS( correctNorms (), allAtOnceNorms (), normTol );
// Use X_j->normInf() to compute the inf-norm of each column of X,
// and use X->getVector(j) to get X_j. Test the resulting norms.
for (size_t j = 0; j < numVecs; ++j) {
RCP<const vec_type> X_j = X->getVector (j);
oneAtATimeNorms[j] = X_j->normInf ();
}
TEST_COMPARE_FLOATING_ARRAYS( correctNorms (), oneAtATimeNorms (), normTol );
}
//
// Bug 6115 test: Ensure that Xpetra::Vector::operator= does a deep copy.
//
TEUCHOS_UNIT_TEST_TEMPLATE_7_DECL( Vector, AssignmentDeepCopies, M, MV, V, Scalar, LocalOrdinal, GlobalOrdinal, Node )
{
typedef LocalOrdinal LO;
typedef GlobalOrdinal GO;
typedef Scalar scalar_type;
typedef Xpetra::Map<LO, GO, Node> map_type;
typedef Xpetra::MapFactory<LO, GO, Node> map_factory_type;
typedef Xpetra::Vector<Scalar, LO, GO, Node> vec_type;
typedef Xpetra::VectorFactory<Scalar, LO, GO, Node> vec_factory_type;
typedef Teuchos::ScalarTraits<Scalar> STS;
typedef typename STS::magnitudeType magnitude_type;
typedef Teuchos::ScalarTraits<magnitude_type> STM;
RCP<const Comm<int> > comm = getDefaultComm ();
EXTRACT_LIB(comm,M) // returns mylib
// Create a Map, which will be the row, domain, and range Map of the matrix A.
const LO numInd = 63;
RCP<const map_type> map = map_factory_type::Build (mylib, numInd, 0, comm);
RCP<vec_type> v = vec_factory_type::Build (map);
v->putScalar (STS::one ());
// Remember the norm of v, to make sure that neither apply() call
// changes it. Remember both the 2-norm and the 1-norm.
const magnitude_type v_norm = v->norm2 ();
const magnitude_type v_oneNorm = v->norm1 ();
// Test the computed 1-norm of v against what we know it should
// be. This test ensures that we aren't just subtracting zero
// from zero in all the tests below.
const magnitude_type v_expectedOneNorm =
as<magnitude_type> (map->getGlobalNumElements ());
TEST_FLOATING_EQUALITY(
v_expectedOneNorm,
v_oneNorm,
STM::squareroot (v_expectedOneNorm) * STM::eps ());
// Keep a copy of v, to test that neither apply() call changes it.
RCP<vec_type> vcopy = vec_factory_type::Build (map);
// Xpetra's operator= does a deep copy, like Epetra, but unlike
// Tpetra (as of early 2014).
*vcopy = *v;
// Make sure that vcopy and v have the same norm. It's OK for the
// norms to be slightly different, due to nondeterminism in
// parallel collectives.
const magnitude_type vcopy_norm = vcopy->norm2 ();
const magnitude_type vcopy_oneNorm = vcopy->norm1 ();
const magnitude_type norm_tol =
static_cast<magnitude_type> (map->getGlobalNumElements ()) * STM::eps ();
TEST_FLOATING_EQUALITY(v_norm, vcopy_norm, norm_tol);
TEST_FLOATING_EQUALITY(v_oneNorm, vcopy_oneNorm, norm_tol);
// Make sure that if you change vcopy, v doesn't change. That is,
// vcopy must be a true deep copy of v. Do this by setting all
// entries of the Vector to 2, using putScalar(2).
{
vcopy->putScalar (as<scalar_type> (2));
// Changing all the entries from 1 to 2 should double the
// 1-norm, but give a little wiggle room for rounding error.
const magnitude_type two = STM::one () + STM::one ();
// First make sure that the 1-norm of vcopy is as expected.
TEST_FLOATING_EQUALITY(two * v_oneNorm, vcopy->norm1 (), norm_tol);
// Now make sure that the 1-norm of v has not changed.
TEST_FLOATING_EQUALITY(v_oneNorm, v->norm1 (), norm_tol);
// Restore vcopy, using v.
*vcopy = *v;
}
// Make sure that if you change vcopy, v doesn't change. That is,
// vcopy must be a true deep copy of v. Do this by setting the
// first local entry of the Vector to 10000, using
// getDataNonConst(0).
{
Teuchos::ArrayRCP<Scalar> vcopy_data = vcopy->getDataNonConst (0);
if (map->getNodeNumElements () != 0) {
vcopy_data[0] += static_cast<magnitude_type> (10000.0);
}
// Destroy the view, so that the changes get written back to the Vector.
vcopy_data = Teuchos::null;
// Adding 10000 to an entry had better change the 2-norm by at least sqrt(10000) = 100.
const magnitude_type minChange = static_cast<magnitude_type> (100.0);
TEUCHOS_TEST_COMPARE(
STM::magnitude (vcopy_norm - vcopy->norm2 ()), >, minChange,
out, success);
// Restore the original vcopy, by doing a deep copy again.
// Xpetra's operator= does a deep copy, like Epetra, but unlike
// Tpetra (as of early 2014).
*vcopy = *v;
// Make sure the original copy got restored.
TEST_FLOATING_EQUALITY(vcopy_norm, vcopy->norm2 (), norm_tol);
}
}
TEUCHOS_UNIT_TEST_TEMPLATE_7_DECL( MultiVector, AssignmentDeepCopies, M, MV, V, Scalar, LocalOrdinal, GlobalOrdinal, Node )
{
typedef LocalOrdinal LO;
typedef GlobalOrdinal GO;
typedef Scalar scalar_type;
typedef Xpetra::Map<LO, GO, Node> map_type;
typedef Xpetra::MapFactory<LO, GO, Node> map_factory_type;
typedef Xpetra::MultiVector<Scalar, LO, GO, Node> mv_type;
typedef Xpetra::MultiVectorFactory<Scalar, LO, GO, Node> mv_factory_type;
typedef Teuchos::ScalarTraits<Scalar> STS;
typedef typename STS::magnitudeType magnitude_type;
typedef Teuchos::ScalarTraits<magnitude_type> STM;
RCP<const Comm<int> > comm = getDefaultComm ();
EXTRACT_LIB(comm,M) // returns mylib
// Create a Map, which will be the row, domain, and range Map of the matrix A.
const LO numInd = 63;
RCP<const map_type> map = map_factory_type::Build (mylib, numInd, 0, comm);
const size_t numVecs = 11;
RCP<mv_type> X = mv_factory_type::Build (map, numVecs);
Teuchos::Array<magnitude_type> X_correctOneNorms (numVecs);
const GO numRows = map->getGlobalNumElements ();
for (size_t j = 0; j < numVecs; ++j) {
X->getVectorNonConst (j)->putScalar (as<scalar_type> (j));
X_correctOneNorms[j] = as<magnitude_type> (numRows) * as<magnitude_type> (j);
}
// Remember the norms of the columns of X, to make sure that
// MultiVector::operator= really does a deep copy. Remember both
// the two-norms and the one-norms.
Teuchos::Array<magnitude_type> X_twoNorms (numVecs);
X->norm2 (X_twoNorms ());
Teuchos::Array<magnitude_type> X_oneNorms (numVecs);
X->norm1 (X_oneNorms ());
// Test the computed 1-norms of the columns of X against what we
// know they should be. This test ensures that we aren't just
// subtracting zero from zero in all the tests below.
const magnitude_type normTol =
STM::squareroot (as<magnitude_type> (numRows)) * STM::eps ();
TEST_COMPARE_FLOATING_ARRAYS(X_correctOneNorms (), X_oneNorms (), normTol);
// Keep a copy of X, to test that operator= really does a deep copy.
RCP<mv_type> X_copy = mv_factory_type::Build (map, numVecs);
*X_copy = *X;
// Make sure that the columns of X and X_copy have the same norms.
Teuchos::Array<magnitude_type> X_copy_twoNorms (numVecs);
X_copy->norm2 (X_copy_twoNorms ());
Teuchos::Array<magnitude_type> X_copy_oneNorms (numVecs);
X_copy->norm1 (X_copy_oneNorms ());
TEST_COMPARE_FLOATING_ARRAYS(X_oneNorms (), X_copy_oneNorms (), normTol);
TEST_COMPARE_FLOATING_ARRAYS(X_twoNorms (), X_copy_twoNorms (), normTol);
// Make sure that if you change X_copy, X doesn't change. That
// is, X_copy must be a true deep copy of X. Do this by setting
// all entries of X_copy to 2, using putScalar(2).
{
X_copy->putScalar (as<scalar_type> (2));
Teuchos::Array<magnitude_type> newOneNorms (numVecs);
X_copy->norm1 (newOneNorms ());
Teuchos::Array<magnitude_type> expectedOneNorms (numVecs);
for (size_t j = 0; j < numVecs; ++j) {
expectedOneNorms[j] =
as<magnitude_type> (2) * as<magnitude_type> (numRows);
}
// First make sure that the 1-norms of the columns X_copy are as expected.
TEST_COMPARE_FLOATING_ARRAYS(newOneNorms (), expectedOneNorms (), normTol);
// Now make sure that the 1-norms of the columns of X have not changed.
X->norm1 (newOneNorms ());
TEST_COMPARE_FLOATING_ARRAYS(newOneNorms (), X_oneNorms (), normTol);
// Restore X_copy to be a deep copy of X.
*X_copy = *X;
}
}
////
TEUCHOS_UNIT_TEST_TEMPLATE_7_DECL( MultiVector, NonMemberConstructorsEpetra, M, MV, V, Scalar, LocalOrdinal, GlobalOrdinal, Node )
{
// typedef typename ScalarTraits<Scalar>::magnitudeType Magnitude;
const global_size_t INVALID = OrdinalTraits<global_size_t>::invalid();
RCP<const Comm<int> > comm = getDefaultComm();
EXTRACT_LIB(comm,M) // returns mylib
// create a Map
const size_t numLocal = 13;
const size_t numVecs = 7;
RCP<const Xpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > map =
Xpetra::UnitTestHelpers::createContigMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(mylib, INVALID,numLocal,comm);
//Xpetra::MapFactory<LocalOrdinal,GlobalOrdinal,Node>::Build(Xpetra::UseEpetra, INVALID, numLocal, 0, comm);
#ifdef HAVE_XPETRA_EPETRA
if(mylib==Xpetra::UseEpetra) {
RCP<const Xpetra::EpetraMapT<GlobalOrdinal,Node> > emap = Teuchos::rcp_dynamic_cast<const Xpetra::EpetraMapT<GlobalOrdinal,Node> >(map);
RCP<Epetra_MultiVector> mvec = Teuchos::rcp(new Epetra_MultiVector(emap->getEpetra_Map(),numVecs));
RCP<Epetra_Vector> vec = Teuchos::rcp(new Epetra_Vector(emap->getEpetra_Map()));
RCP<MV> xmv = Teuchos::rcp_dynamic_cast<MV>(Xpetra::toXpetra<GlobalOrdinal,Node>(mvec));
//RCP<V> xv = Teuchos::rcp_dynamic_cast<V >(Xpetra::toXpetra<GlobalOrdinal,Node>(vec)); // there is no toXpetra for Vectors!
TEST_EQUALITY(xmv->getNumVectors(), numVecs);
//TEST_EQUALITY_CONST(xv->getNumVectors(), 1);
}
#endif
}
////
TEUCHOS_UNIT_TEST_TEMPLATE_7_DECL( MultiVector, NonMemberConstructorsTpetra, M, MV, V, Scalar, LocalOrdinal, GlobalOrdinal, Node )
{
// typedef typename ScalarTraits<Scalar>::magnitudeType Magnitude;
const global_size_t INVALID = OrdinalTraits<global_size_t>::invalid();
RCP<const Comm<int> > comm = getDefaultComm();
EXTRACT_LIB(comm,M) // returns mylib
// create a Map
const size_t numLocal = 13;
const size_t numVecs = 7;
RCP<const Xpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > map =
Xpetra::UnitTestHelpers::createContigMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(mylib, INVALID,numLocal,comm);
#ifdef HAVE_XPETRA_TPETRA
if(mylib==Xpetra::UseTpetra) {
RCP<const Xpetra::TpetraMap<LocalOrdinal,GlobalOrdinal,Node> > tmap = Teuchos::rcp_dynamic_cast<const Xpetra::TpetraMap<LocalOrdinal,GlobalOrdinal,Node> >(map);
RCP<Tpetra::MultiVector<Scalar,LocalOrdinal,GlobalOrdinal,Node> > mvec = Tpetra::createMultiVector<Scalar,LocalOrdinal,GlobalOrdinal,Node>(tmap->getTpetra_Map(),numVecs);
RCP<Tpetra::Vector<Scalar,LocalOrdinal,GlobalOrdinal,Node> > vec = Tpetra::createVector<Scalar,LocalOrdinal,GlobalOrdinal,Node>(tmap->getTpetra_Map());
TEST_EQUALITY(mvec->getNumVectors(), numVecs);
TEST_EQUALITY_CONST(vec->getNumVectors(), 1);
RCP<const MV> xmv = Teuchos::rcp_dynamic_cast<const MV>(Xpetra::toXpetra<Scalar,LocalOrdinal,GlobalOrdinal,Node>(mvec));
RCP<const V> xv = Teuchos::rcp_dynamic_cast<const V >(Xpetra::toXpetra<Scalar,LocalOrdinal,GlobalOrdinal,Node>(vec));
TEST_EQUALITY(xmv->getNumVectors(), numVecs);
TEST_EQUALITY_CONST(xv->getNumVectors(), 1);
}
#endif
}
////
TEUCHOS_UNIT_TEST_TEMPLATE_7_DECL( MultiVector, basic, M, MV, V, Scalar, LocalOrdinal, GlobalOrdinal , Node )
{
typedef typename ScalarTraits<Scalar>::magnitudeType Magnitude;
const global_size_t INVALID = OrdinalTraits<global_size_t>::invalid();
RCP<const Comm<int> > comm = getDefaultComm();
const int numRanks = comm->getSize();
const int myRank = comm->getRank();
EXTRACT_LIB(comm,M) // returns mylib
// create a Map
const size_t numLocal = 13;
const size_t numVecs = 7;
RCP<const Xpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > map =
Xpetra::UnitTestHelpers::createContigMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(mylib, INVALID,numLocal,comm);
MV mvec(map,numVecs,true);
TEST_EQUALITY( mvec.getNumVectors(), numVecs );
TEST_EQUALITY( mvec.getLocalLength(), numLocal );
TEST_EQUALITY( mvec.getGlobalLength(), numRanks*numLocal );
// Norms are not computed by Epetra_IntMultiVector so far
#ifdef HAVE_XPETRA_EPETRA
if(!is_same<typename MV::node_type, Xpetra::EpetraNode>::value)
#endif
{
if(!(is_same<typename MV::scalar_type, int>::value || is_same<typename MV::scalar_type, long long int>::value)) {
std::cout << "Running the norm tests!" << std::endl;
// we zeroed it out in the constructor; all norms should be zero
Array<Magnitude> norms(numVecs), zeros(numVecs);
std::fill(zeros.begin(),zeros.end(),ScalarTraits<Magnitude>::zero());
mvec.norm2(norms);
TEST_COMPARE_ARRAYS(norms,zeros);
mvec.norm1(norms);
TEST_COMPARE_ARRAYS(norms,zeros);
mvec.normInf(norms);
TEST_COMPARE_ARRAYS(norms,zeros);
}
}
Scalar testValue = 2, sumValue = 3;
LocalOrdinal testLID = 7;
GlobalOrdinal testGID = myRank*numLocal + testLID;
std::cout << "myRank: " << myRank << ", testGID=" << testGID << std::endl;
mvec.replaceLocalValue(testLID, 3, testValue);
mvec.replaceLocalValue(testLID, 4, testValue);
mvec.sumIntoLocalValue(testLID, 4, sumValue);
mvec.replaceGlobalValue(testGID, 5, testValue);
mvec.replaceGlobalValue(testGID, 6, testValue);
mvec.sumIntoGlobalValue(testGID, 6, sumValue);
ArrayRCP<const Scalar> replaceLocalData = mvec.getData(3);
ArrayRCP<const Scalar> sumIntoLocalData = mvec.getData(4);
ArrayRCP<const Scalar> replaceGlobalData = mvec.getData(5);
ArrayRCP<const Scalar> sumIntoGlobalData = mvec.getData(6);
if(is_same<typename MV::scalar_type, int>::value || is_same<typename MV::scalar_type, long long int>::value) {
TEST_EQUALITY( replaceLocalData[testLID], testValue );
TEST_EQUALITY( sumIntoLocalData[testLID], testValue + sumValue );
TEST_EQUALITY( replaceGlobalData[testLID], testValue );
TEST_EQUALITY( sumIntoGlobalData[testLID], testValue + sumValue );
} else {
TEST_FLOATING_EQUALITY( replaceLocalData[testLID], testValue, 1.0e-10 );
TEST_FLOATING_EQUALITY( sumIntoLocalData[testLID], testValue + sumValue, 1.0e-10 );
TEST_FLOATING_EQUALITY( replaceGlobalData[testLID], testValue, 1.0e-10 );
TEST_FLOATING_EQUALITY( sumIntoGlobalData[testLID], testValue + sumValue, 1.0e-10 );
}
}
////
TEUCHOS_UNIT_TEST_TEMPLATE_7_DECL( MultiVector, BadConstNumVecs, M, MV, V, Scalar, LocalOrdinal, GlobalOrdinal , Node )
{
const global_size_t INVALID = OrdinalTraits<global_size_t>::invalid();
RCP<const Comm<int> > comm = getDefaultComm();
EXTRACT_LIB(comm,M) // returns mylib
// create a Map
const size_t numLocal = 13;
RCP<const Xpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > map =
Xpetra::UnitTestHelpers::createContigMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(mylib, INVALID,numLocal,comm);
TEST_THROW(MV mvec(map,0), std::invalid_argument);
if (std::numeric_limits<size_t>::is_signed) {
TEST_THROW(MV mvec(map,INVALID), std::invalid_argument);
}
}
////
TEUCHOS_UNIT_TEST_TEMPLATE_7_DECL( MultiVector, BadConstLDA, M, MV, V, Scalar, LocalOrdinal, GlobalOrdinal , Node )
{
#ifdef HAVE_XPETRA_TPETRA
// numlocal > LDA
// ergo, the arrayview doesn't contain enough data to specify the entries
// also, if bounds checking is enabled, check that bad bounds are caught
const global_size_t INVALID = OrdinalTraits<global_size_t>::invalid();
RCP<const Comm<int> > comm = getDefaultComm();
EXTRACT_LIB(comm,M) // returns mylib
const size_t numLocal = 2;
const size_t numVecs = 2;
// multivector has two vectors, each proc having two values per vector
RCP<const Xpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > map =
Xpetra::UnitTestHelpers::createContigMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(mylib, INVALID,numLocal,comm);
// we need 4 scalars to specify values on each proc
Array<Scalar> values(4);
#ifdef HAVE_TPETRA_DEBUG
// too small an ArrayView (less than 4 values) is met with an exception, if debugging is on
TEST_THROW(MV mvec(map,values(0,3),2,numVecs), std::runtime_error);
// it could also be too small for the given LDA:
TEST_THROW(MV mvec(map,values(),2+1,numVecs), std::runtime_error);
// too small for number of entries in a Vector
TEST_THROW(V vec(map,values(0,1)), std::runtime_error);
#endif
// LDA < numLocal throws an exception anytime
TEST_THROW(MV mvec(map,values(0,4),1,numVecs), std::runtime_error);
#endif
}
////
TEUCHOS_UNIT_TEST_TEMPLATE_7_DECL( MultiVector, NonContigView, M, MV, V, Scalar, LocalOrdinal, GlobalOrdinal , Node )
{
#ifdef HAVE_XPETRA_TPETRA
if (ScalarTraits<Scalar>::isOrdinal) return;
typedef typename ScalarTraits<Scalar>::magnitudeType Mag;
const Mag tol = errorTolSlack * errorTolSlack * ScalarTraits<Mag>::eps(); // extra slack on this test; dots() seem to be a little sensitive for single precision types
const Mag M0 = ScalarTraits<Mag>::zero();
const global_size_t INVALID = OrdinalTraits<global_size_t>::invalid();
RCP<const Comm<int> > comm = getDefaultComm();
EXTRACT_LIB(comm,M) // returns mylib
// create a Map
const size_t numLocal = 53; // making this larger reduces the change that A below will have no non-zero entries, i.e., that C = abs(A) is still equal to A (we assume it is not)
const size_t numVecs = 7;
RCP<const Xpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > map =
Xpetra::UnitTestHelpers::createContigMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(mylib, INVALID,numLocal,comm);
//
// we will create a non-contig subview of the vector; un-viewed vectors should not be changed
Tuple<size_t,4> inView1 = tuple<size_t>(1,4,3,2);
Tuple<size_t,3> exView1 = tuple<size_t>(0,5,6);
Tuple<size_t,4> inView2 = tuple<size_t>(6,0,4,3);
Tuple<size_t,4> exView2 = tuple<size_t>(1,2,5,7);
const size_t numView = 4;
TEUCHOS_TEST_FOR_EXCEPTION(numView != as<size_t>(inView1.size()), std::logic_error, "Someone ruined a test invariant.");
TEUCHOS_TEST_FOR_EXCEPTION(numView != as<size_t>(inView1.size()), std::logic_error, "Someone ruined a test invariant."); //TODO: is it a duplication ? an error ?
TEUCHOS_TEST_FOR_EXCEPTION(numView != as<size_t>(inView2.size()), std::logic_error, "Someone ruined a test invariant.");
{
// test dot, all norms, randomize
MV mvOrig1(map,numVecs), mvOrig2(map,numVecs+1), mvWeights(map,numVecs);
mvWeights.randomize();
RCP<const MV> mvW1 = mvWeights.subView(tuple<size_t>(0));
RCP<const MV> mvSubWeights = mvWeights.subView(inView1);
mvOrig1.randomize();
mvOrig2.randomize();
//
Array<Mag> nOrig2(numVecs), nOrig1(numVecs), nOrigI(numVecs), nOrigW(numVecs), nOrigW1(numVecs);
Array<Scalar> meansOrig(numVecs), dotsOrig(numView);
mvOrig1.norm1(nOrig1());
mvOrig1.norm2(nOrig2());
mvOrig1.normInf(nOrigI());
mvOrig1.meanValue(meansOrig());
for (size_t j=0; j < numView; ++j) {
RCP<const V> v1 = mvOrig1.getVector(inView1[j]),
v2 = mvOrig2.getVector(inView2[j]);
dotsOrig[j] = v1->dot(*v2);
}
// create the views, compute and test
RCP< MV> mvView1 = mvOrig1.subViewNonConst(inView1);
RCP<const MV> mvView2 = mvOrig2.subView(inView2);
Array<Mag> nView2(numView), nView1(numView), nViewI(numView), nViewW(numView), nViewW1(numView);
Array<Scalar> meansView(numView), dotsView(numView);
mvView1->norm1(nView1());
mvView1->norm2(nView2());
mvView1->normInf(nViewI());
mvView1->meanValue(meansView());
mvView1->dot( *mvView2, dotsView() );
for (size_t j=0; j < numView; ++j) {
TEST_FLOATING_EQUALITY(nOrig1[inView1[j]], nView1[j], tol);
TEST_FLOATING_EQUALITY(nOrig2[inView1[j]], nView2[j], tol);
TEST_FLOATING_EQUALITY(nOrigI[inView1[j]], nViewI[j], tol);
TEST_FLOATING_EQUALITY(meansOrig[inView1[j]], meansView[j], tol);
TEST_FLOATING_EQUALITY(dotsOrig[j], dotsView[j], tol);
}
// randomize the view, compute view one-norms, test difference
mvView2 = Teuchos::null;
mvView1->randomize();
Array<Mag> nView1_aft(numView);
mvView1->norm1(nView1_aft());
for (size_t j=0; j < numView; ++j) {
TEST_INEQUALITY(nView1[j], nView1_aft[j]);
}
// release the view, test that viewed columns changed, others didn't
mvView1 = Teuchos::null;
Array<Mag> nOrig1_aft(numVecs);
mvOrig1.norm1(nOrig1_aft());
for (size_t j=0; j < as<size_t>(inView1.size()); ++j) {
TEST_INEQUALITY(nOrig1[inView1[j]], nOrig1_aft[inView1[j]]);
}
for (size_t j=0; j < as<size_t>(exView1.size()); ++j) {
TEST_FLOATING_EQUALITY(nOrig1[exView1[j]], nOrig1_aft[exView1[j]], tol);
}
}
{
MV mvOrigA(map,numVecs), mvOrigB(map,numVecs), mvOrigC(map,numVecs+1);
mvOrigA.randomize();
mvOrigB.randomize();
mvOrigC.randomize();
Array<Mag> nrmOrigA(numVecs), nrmOrigB(numVecs), nrmOrigC(numVecs+1);
mvOrigA.norm2(nrmOrigA());
mvOrigB.norm2(nrmOrigB());
mvOrigC.norm2(nrmOrigC());
RCP<MV> mvViewA = mvOrigA.subViewNonConst(inView1);
RCP<MV> mvViewB = mvOrigB.subViewNonConst(inView1);
RCP<MV> mvViewC = mvOrigC.subViewNonConst(inView2);
// set C = abs(A)
{
Array<Scalar> mnA_bef(inView1.size()), mnC_bef(inView1.size()),
mnA_aft(inView1.size()), mnC_aft(inView1.size());
mvViewA->meanValue(mnA_bef());
mvViewC->meanValue(mnC_bef());
mvViewC->abs(*mvViewA);
mvViewA->meanValue(mnA_aft());
mvViewC->meanValue(mnC_aft());
for (size_t j=0; j < as<size_t>(inView1.size()); ++j) {
TEST_FLOATING_EQUALITY(mnA_bef[j], mnA_aft[j], tol);
TEST_INEQUALITY(mnC_bef[j], mnC_aft[j]);
}
}
// then set A = B = C
// good excuse for some double views
// use full views of C and B for this, check means before and after
// to make sure that only A and B change.
{
Array<Scalar> A_bef(inView1.size()), B_bef(inView1.size()), C_bef(inView2.size());
mvViewA->meanValue(A_bef());
mvViewB->meanValue(B_bef());
mvViewC->meanValue(C_bef());
RCP<MV> doubleViewA = mvViewA->subViewNonConst(Range1D(0,inView1.size()-1));
RCP<MV> doubleViewB = mvViewB->subViewNonConst(Range1D(0,inView1.size()-1));
RCP<const MV> doubleViewC = mvViewC->subView(Range1D(0,inView1.size()-1));
(*doubleViewA) = (*doubleViewB) = (*doubleViewC);
doubleViewA = Teuchos::null;
doubleViewB = Teuchos::null;
doubleViewC = Teuchos::null;
Array<Scalar> A_aft(inView1.size()), B_aft(inView1.size()), C_aft(inView2.size());
mvViewA->meanValue(A_aft());
mvViewB->meanValue(B_aft());
mvViewC->meanValue(C_aft());
for (size_t j=0; j < as<size_t>(inView1.size()); ++j) {
TEST_FLOATING_EQUALITY(C_bef[j], C_aft[j], tol);
TEST_FLOATING_EQUALITY(C_bef[j], B_aft[j], tol);
TEST_FLOATING_EQUALITY(C_bef[j], A_aft[j], tol);
TEST_INEQUALITY(A_bef[j], A_aft[j]);
TEST_INEQUALITY(B_bef[j], B_aft[j]);
}
}
{
TEUCHOS_TEST_FOR_EXCEPTION(inView1.size() != 4, std::logic_error, "Someone ruined a test invariant.");
Tuple<size_t,4> reorder = tuple<size_t>(3,1,0,2);
RCP<MV> dvA = mvViewA->subViewNonConst(reorder);
RCP<MV> dvB = mvViewB->subViewNonConst(reorder);
RCP<MV> dvC = mvViewC->subViewNonConst(reorder);
// C == B == A
// C *= 2 -> C == 2*A == 2*B scale(alpha)
dvC->scale( as<Scalar>(2) );
// A = -C + 2*A -> C == 2*B, A == 0 update(alpha,mv,beta)
dvA->update(as<Scalar>(-1),*dvC, as<Scalar>(2));
// C = 2*A + 2*B - .5*C -> C == B, A == 0, update(alpha,mv,beta,mv,gamma)
dvC->update(as<Scalar>(2),*dvA, as<Scalar>(2), *dvB, as<Scalar>(-.5));
// B = 0.5 -> B = 0.5, A == 0, putScalar(alpha)
dvB->putScalar( as<Scalar>(0.5) );
// C.recip(B) -> C = 2, B == 0.5, A == 0, reciprocal(mv)
dvC->reciprocal(*dvB);
// B = C/2 -> A == 0, B == 1, C == 2
dvB->scale(as<Mag>(0.5),*dvC);
dvA = Teuchos::null;
dvB = Teuchos::null;
dvC = Teuchos::null;
Array<Mag> nrmA(4), nrmB(4), nrmC(4);
mvViewA->norm1(nrmA()); // norm1(0) = 0
mvViewB->norm1(nrmB()); // norm1(1.0) = N
mvViewC->norm1(nrmC()); // norm1(2.0) = 2 * N
const Mag OneN = as<Mag>(mvViewA->getGlobalLength());
const Mag TwoN = OneN + OneN;
for (size_t j=0; j < 4; ++j) {
TEST_FLOATING_EQUALITY( nrmA[j], M0, tol );
TEST_FLOATING_EQUALITY( nrmB[j], OneN, tol );
TEST_FLOATING_EQUALITY( nrmC[j], TwoN, tol );
}
}
// done with these views; clear them, ensure that only the viewed
// vectors changed in the original multivectors
mvViewA = Teuchos::null;
mvViewB = Teuchos::null;
mvViewC = Teuchos::null;
Array<Mag> nrmOrigA_aft(numVecs), nrmOrigB_aft(numVecs), nrmOrigC_aft(numVecs+1);
mvOrigA.norm2(nrmOrigA_aft());
mvOrigB.norm2(nrmOrigB_aft());
mvOrigC.norm2(nrmOrigC_aft());
for (size_t j=0; j < as<size_t>(inView1.size()); ++j) {
TEST_INEQUALITY(nrmOrigA[inView1[j]], nrmOrigA_aft[inView1[j]]);
TEST_INEQUALITY(nrmOrigB[inView1[j]], nrmOrigB_aft[inView1[j]]);
TEST_INEQUALITY(nrmOrigC[inView2[j]], nrmOrigC_aft[inView2[j]]);
}
for (size_t j=0; j < as<size_t>(exView1.size()); ++j) {
TEST_FLOATING_EQUALITY(nrmOrigA[exView1[j]], nrmOrigA_aft[exView1[j]], tol);
TEST_FLOATING_EQUALITY(nrmOrigB[exView1[j]], nrmOrigB_aft[exView1[j]], tol);
}
for (size_t j=0; j < as<size_t>(exView1.size()); ++j) {
TEST_FLOATING_EQUALITY(nrmOrigC[exView2[j]], nrmOrigC_aft[exView2[j]], tol);
}
}
#endif
}
////
TEUCHOS_UNIT_TEST_TEMPLATE_7_DECL( MultiVector, Describable, M, MV, V, Scalar, LocalOrdinal , GlobalOrdinal, Node )
{
#ifdef HAVE_XPETRA_TPETRA
const LocalOrdinal INVALID = OrdinalTraits<LocalOrdinal>::invalid();
RCP<const Comm<int> > comm = getDefaultComm();
const int myImageID = comm->getRank();
EXTRACT_LIB(comm,M) // returns mylib
// create Map
RCP<const Xpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > map =
Xpetra::UnitTestHelpers::createContigMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(mylib, INVALID,3,comm);
// test labeling
const string lbl("mvecA");
MV mvecA(map,2);
string desc1 = mvecA.description();
if (myImageID==0) out << desc1 << endl;
#ifdef XPETRA_NOT_IMPLEMENTED
mvecA.setObjectLabel(lbl);
#endif
string desc2 = mvecA.description();
if (myImageID==0) out << desc2 << endl;
if (myImageID==0) {
#ifdef XPETRA_NOT_IMPLEMENTED
TEST_EQUALITY( mvecA.getObjectLabel(), lbl );
#endif
}
// test describing at different verbosity levels
if (myImageID==0) out << "Describing with verbosity VERB_DEFAULT..." << endl;
mvecA.describe(out);
comm->barrier();
comm->barrier();
if (myImageID==0) out << "Describing with verbosity VERB_NONE..." << endl;
mvecA.describe(out,VERB_NONE);
comm->barrier();
comm->barrier();
if (myImageID==0) out << "Describing with verbosity VERB_LOW..." << endl;
mvecA.describe(out,VERB_LOW);
comm->barrier();
comm->barrier();
if (myImageID==0) out << "Describing with verbosity VERB_MEDIUM..." << endl;
mvecA.describe(out,VERB_MEDIUM);
comm->barrier();
comm->barrier();
if (myImageID==0) out << "Describing with verbosity VERB_HIGH..." << endl;
mvecA.describe(out,VERB_HIGH);
comm->barrier();
comm->barrier();
if (myImageID==0) out << "Describing with verbosity VERB_EXTREME..." << endl;
mvecA.describe(out,VERB_EXTREME);
comm->barrier();
comm->barrier();
#endif
}
////
TEUCHOS_UNIT_TEST_TEMPLATE_6_DECL( MultiVector, BadMultiply, MV, V, Scalar, LocalOrdinal, GlobalOrdinal , Node )
{
#ifdef HAVE_XPETRA_TPETRA
const global_size_t INVALID = OrdinalTraits<global_size_t>::invalid();
RCP<const Comm<int> > comm = getDefaultComm();
#ifdef XPETRA_NOT_IMPLEMENTED
const Scalar S1 = ScalarTraits<Scalar>::one(),
S0 = ScalarTraits<Scalar>::zero();
#endif
// case 1: C(local) = A^X(local) * B^X(local) : four of these
{
// create local Maps
RCP<const Xpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > map3l = createLocalMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(3,comm),
map2l = createLocalMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(2,comm);
MV mvecA(map3l,2),
mvecB(map2l,3),
mvecD(map2l,2);
// failures, 8 combinations:
// [NTC],[NTC]: A,B don't match
// [NTC],[NTC]: C doesn't match A,B
#ifdef XPETRA_NOT_IMPLEMENTED
TEST_THROW( mvecD.multiply(NO_TRANS ,NO_TRANS ,S1,mvecA,mvecA,S0), std::runtime_error); // 2x2: 3x2 x 3x2
TEST_THROW( mvecD.multiply(NO_TRANS ,CONJ_TRANS,S1,mvecA,mvecB,S0), std::runtime_error); // 2x2: 3x2 x 3x2
TEST_THROW( mvecD.multiply(CONJ_TRANS,NO_TRANS ,S1,mvecB,mvecA,S0), std::runtime_error); // 2x2: 3x2 x 3x2
TEST_THROW( mvecD.multiply(CONJ_TRANS,CONJ_TRANS,S1,mvecB,mvecB,S0), std::runtime_error); // 2x2: 3x2 x 3x2
TEST_THROW( mvecD.multiply(NO_TRANS ,NO_TRANS ,S1,mvecA,mvecB,S0), std::runtime_error); // 2x2: 3x2 x 2x3
TEST_THROW( mvecD.multiply(NO_TRANS ,CONJ_TRANS,S1,mvecA,mvecA,S0), std::runtime_error); // 2x2: 3x2 x 2x3
TEST_THROW( mvecD.multiply(CONJ_TRANS,NO_TRANS ,S1,mvecB,mvecB,S0), std::runtime_error); // 2x2: 3x2 x 2x3
TEST_THROW( mvecD.multiply(CONJ_TRANS,CONJ_TRANS,S1,mvecB,mvecA,S0), std::runtime_error); // 2x2: 3x2 x 2x3
#endif
}
// case 2: C(local) = A^T(distr) * B (distr) : one of these
{
RCP<const Xpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > map3n = createContigMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(INVALID,3,comm),
map2n = createContigMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(INVALID,2,comm);
RCP<const Xpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > map2l = createLocalMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(2,comm),
map3l = createLocalMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(3,comm);
MV mv3nx2(map3n,2),
mv2nx2(map2n,2),
mv2lx2(map2l,2),
mv2lx3(map2l,3),
mv3lx2(map3l,2),
mv3lx3(map3l,3);
#ifdef XPETRA_NOT_IMPLEMENTED
// non-matching input lengths
TEST_THROW( mv2lx2.multiply(CONJ_TRANS,NO_TRANS,S1,mv3nx2,mv2nx2,S0), std::runtime_error); // (2 x 3n) x (2n x 2) not compat
TEST_THROW( mv2lx2.multiply(CONJ_TRANS,NO_TRANS,S1,mv2nx2,mv3nx2,S0), std::runtime_error); // (2 x 2n) x (3n x 2) not compat
// non-matching output size
TEST_THROW( mv3lx3.multiply(CONJ_TRANS,NO_TRANS,S1,mv3nx2,mv3nx2,S0), std::runtime_error); // (2 x 3n) x (3n x 2) doesn't fit 3x3
TEST_THROW( mv3lx2.multiply(CONJ_TRANS,NO_TRANS,S1,mv3nx2,mv3nx2,S0), std::runtime_error); // (2 x 3n) x (3n x 2) doesn't fit 3x2
TEST_THROW( mv2lx3.multiply(CONJ_TRANS,NO_TRANS,S1,mv3nx2,mv3nx2,S0), std::runtime_error); // (2 x 3n) x (3n x 2) doesn't fit 2x3
#endif
}
// case 3: C(distr) = A (distr) * B^X(local) : two of these
{
RCP<const Xpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > map3n = createContigMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(INVALID,3,comm),
map2n = createContigMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(INVALID,2,comm);
RCP<const Xpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > map2l = createLocalMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(2,comm),
map3l = createLocalMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(3,comm);
MV mv3nx2(map3n,2),
mv2nx2(map2n,2),
mv2x3(map2l,3),
mv3x2(map3l,2);
#ifdef XPETRA_NOT_IMPLEMENTED
// non-matching input lengths
TEST_THROW( mv3nx2.multiply(NO_TRANS,CONJ_TRANS,S1,mv3nx2,mv2x3,S0), std::runtime_error); // (3n x 2) x (3 x 2) (trans) not compat
TEST_THROW( mv3nx2.multiply(NO_TRANS,NO_TRANS ,S1,mv3nx2,mv3x2,S0), std::runtime_error); // (3n x 2) x (3 x 2) (nontrans) not compat
// non-matching output sizes
TEST_THROW( mv3nx2.multiply(NO_TRANS,CONJ_TRANS,S1,mv3nx2,mv3x2,S0), std::runtime_error); // (3n x 2) x (2 x 3) doesn't fit 3nx2
TEST_THROW( mv3nx2.multiply(NO_TRANS,NO_TRANS ,S1,mv3nx2,mv2x3,S0), std::runtime_error); // (3n x 2) x (2 x 3) doesn't fit 3nx2
#endif
}
#endif
}
////
TEUCHOS_UNIT_TEST_TEMPLATE_6_DECL( MultiVector, Multiply, MV, V, Scalar, LocalOrdinal, GlobalOrdinal , Node )
{
#ifdef HAVE_XPETRA_TPETRA
using Teuchos::View;
// typedef typename ScalarTraits<Scalar>::magnitudeType Mag;
const global_size_t INVALID = OrdinalTraits<global_size_t>::invalid();
RCP<const Comm<int> > comm = getDefaultComm();
#ifdef XPETRA_NOT_IMPLEMENTED
const int numImages = comm->getSize();
#endif
// create a Map
RCP<const Xpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > map3n = createContigMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(INVALID,3,comm),
map2n = createContigMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(INVALID,2,comm);
RCP<const Xpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > lmap3 = createLocalMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(3,comm),
lmap2 = createLocalMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(2,comm);
#ifdef XPETRA_NOT_IMPLEMENTED
const Scalar S1 = ScalarTraits<Scalar>::one(),
S0 = ScalarTraits<Scalar>::zero();
const Mag M0 = ScalarTraits<Mag>::zero();
#endif
// case 1: C(local) = A^X(local) * B^X(local) : four of these
// deterministic input/output
{
MV mv3x2l(lmap3,2),
mv2x3l(lmap2,3),
mv2x2l(lmap2,2),
mv3x3l(lmap3,3);
// fill multivectors with ones
mv3x2l.putScalar(ScalarTraits<Scalar>::one());
mv2x3l.putScalar(ScalarTraits<Scalar>::one());
// fill expected answers Array
Teuchos::Array<Scalar> check2(4,3); // each entry (of four) is the product [1 1 1]*[1 1 1]' = 3
Teuchos::Array<Scalar> check3(9,2); // each entry (of nine) is the product [1 1]*[1 1]' = 2
// test
ArrayRCP<const Scalar> tmpView;
#ifdef XPETRA_NOT_IMPLEMENTED
mv3x3l.multiply(NO_TRANS ,NO_TRANS ,S1,mv3x2l,mv2x3l,S0);
tmpView = mv3x3l.get1dView(); TEST_COMPARE_FLOATING_ARRAYS(tmpView(0,9),check3,M0);
mv2x2l.multiply(NO_TRANS ,CONJ_TRANS,S1,mv2x3l,mv2x3l,S0);
tmpView = mv2x2l.get1dView(); TEST_COMPARE_FLOATING_ARRAYS(tmpView(0,4),check2,M0);
mv2x2l.multiply(CONJ_TRANS,NO_TRANS ,S1,mv3x2l,mv3x2l,S0);
tmpView = mv2x2l.get1dView(); TEST_COMPARE_FLOATING_ARRAYS(tmpView(0,4),check2,M0);
mv3x3l.multiply(CONJ_TRANS,CONJ_TRANS,S1,mv2x3l,mv3x2l,S0);
tmpView = mv3x3l.get1dView(); TEST_COMPARE_FLOATING_ARRAYS(tmpView(0,9),check3,M0);
#endif
}
// case 1: C(local) = A^X(local) * B^X(local) : four of these
// random input/output
{
#ifdef XPETRA_NOT_IMPLEMENTED
Array<Scalar> tmvCopy1(6), tmvCopy2(6);
ArrayView<Scalar> sdmView(Teuchos::null);
MV tmv3x2(lmap3,2),
tmv2x3(lmap2,3),
tmv2x2(lmap2,2),
tmv3x3(lmap3,3);
// fill multivectors with random, get copy of contents
tmv3x2.randomize(); tmv3x2.get1dCopy(tmvCopy1(),3);
tmv2x3.randomize(); tmv2x3.get1dCopy(tmvCopy2(),2);
// point SerialDenseMatrices at copies
SerialDenseMatrix<int,Scalar> sdm3x2(View,tmvCopy1.getRawPtr(),3,3,2);
SerialDenseMatrix<int,Scalar> sdm2x3(View,tmvCopy2.getRawPtr(),2,2,3);
// space for answers
SerialDenseMatrix<int,Scalar> sdm2x2(2,2), sdm3x3(3,3);
// test: perform local Tpetra::MultiVector multiply and Teuchos::SerialDenseMatrix multiply, then check that answers are equivalent
ArrayRCP<const Scalar> tmpView;
{
tmv3x3.multiply(NO_TRANS,NO_TRANS,S1,tmv3x2,tmv2x3,S0);
sdm3x3.multiply(NO_TRANS,NO_TRANS,S1,sdm3x2,sdm2x3,S0);
tmpView = tmv3x3.get1dView(); sdmView = arrayView(sdm3x3.values(),sdm3x3.numRows()*sdm3x3.numCols());
TEST_COMPARE_FLOATING_ARRAYS(tmpView,sdmView,ScalarTraits<Mag>::eps() * 10.);
}
{
tmv2x2.multiply(NO_TRANS,CONJ_TRANS,S1,tmv2x3,tmv2x3,S0);
sdm2x2.multiply(NO_TRANS,CONJ_TRANS,S1,sdm2x3,sdm2x3,S0);
tmpView = tmv2x2.get1dView(); sdmView = arrayView(sdm2x2.values(),sdm2x2.numRows()*sdm2x2.numCols());
TEST_COMPARE_FLOATING_ARRAYS(tmpView,sdmView,ScalarTraits<Mag>::eps() * 10.);
}
{
tmv2x2.multiply(CONJ_TRANS,NO_TRANS,S1,tmv3x2,tmv3x2,S0);
sdm2x2.multiply(CONJ_TRANS,NO_TRANS,S1,sdm3x2,sdm3x2,S0);
tmpView = tmv2x2.get1dView(); sdmView = arrayView(sdm2x2.values(),sdm2x2.numRows()*sdm2x2.numCols());
TEST_COMPARE_FLOATING_ARRAYS(tmpView,sdmView,ScalarTraits<Mag>::eps() * 10.);
}
{
tmv3x3.multiply(CONJ_TRANS,CONJ_TRANS,S1,tmv2x3,tmv3x2,S0);
sdm3x3.multiply(CONJ_TRANS,CONJ_TRANS,S1,sdm2x3,sdm3x2,S0);
tmpView = tmv3x3.get1dView(); sdmView = arrayView(sdm3x3.values(),sdm3x3.numRows()*sdm3x3.numCols());
TEST_COMPARE_FLOATING_ARRAYS(tmpView,sdmView,ScalarTraits<Mag>::eps() * 10.);
}
#endif
}
#ifdef XPETRA_NOT_IMPLEMENTED
// case 2: C(local) = A^T(distr) * B (distr) : one of these
{
MV mv3nx2(map3n,2),
mv3nx3(map3n,3),
// locals
mv2x2(lmap2,2),
mv2x3(lmap2,3),
mv3x2(lmap3,2),
mv3x3(lmap3,3);
// fill multivectors with ones
mv3nx3.putScalar(ScalarTraits<Scalar>::one());
mv3nx2.putScalar(ScalarTraits<Scalar>::one());
// fill expected answers Array
ArrayRCP<const Scalar> tmpView;
Teuchos::Array<Scalar> check(9,3*numImages);
// test
mv2x2.multiply(CONJ_TRANS,NO_TRANS,S1,mv3nx2,mv3nx2,S0);
tmpView = mv2x2.get1dView(); TEST_COMPARE_FLOATING_ARRAYS(tmpView,check(0,tmpView.size()),M0);
mv2x3.multiply(CONJ_TRANS,NO_TRANS,S1,mv3nx2,mv3nx3,S0);
tmpView = mv2x3.get1dView(); TEST_COMPARE_FLOATING_ARRAYS(tmpView,check(0,tmpView.size()),M0);
mv3x2.multiply(CONJ_TRANS,NO_TRANS,S1,mv3nx3,mv3nx2,S0);
tmpView = mv3x2.get1dView(); TEST_COMPARE_FLOATING_ARRAYS(tmpView,check(0,tmpView.size()),M0);
mv3x3.multiply(CONJ_TRANS,NO_TRANS,S1,mv3nx3,mv3nx3,S0);
tmpView = mv3x3.get1dView(); TEST_COMPARE_FLOATING_ARRAYS(tmpView,check(0,tmpView.size()),M0);
}
// case 3: C(distr) = A (distr) * B^X(local) : two of these
{
MV mv3nx2(map3n,2),
mv3nx3(map3n,3),
// locals
mv2x3(lmap2,3);
// fill multivectors with ones
mv2x3.putScalar(S1);
// fill expected answers Array
ArrayRCP<const Scalar> tmpView;
Teuchos::Array<Scalar> check2(9,2), check3(6,3);
// test
mv3nx3.putScalar(S1); mv3nx2.putScalar(S1);
mv3nx3.multiply(NO_TRANS, NO_TRANS,S1,mv3nx2,mv2x3,S0);
tmpView = mv3nx3.get1dView(); TEST_COMPARE_FLOATING_ARRAYS(tmpView,check2,M0);
mv3nx3.putScalar(S1); mv3nx2.putScalar(S1);
mv3nx2.multiply(NO_TRANS,CONJ_TRANS,S1,mv3nx3,mv2x3,S0);
tmpView = mv3nx2.get1dView(); TEST_COMPARE_FLOATING_ARRAYS(tmpView,check3,M0);
}
#endif
#endif // HAVE_XPETRA_TPETRA
}
////
TEUCHOS_UNIT_TEST_TEMPLATE_7_DECL( MultiVector, ElementWiseMultiply, M, MV, V, Scalar, LocalOrdinal, GlobalOrdinal , Node )
{
#ifdef HAVE_XPETRA_TPETRA
using Teuchos::View;
typedef typename ScalarTraits<Scalar>::magnitudeType Mag;
const global_size_t INVALID = OrdinalTraits<global_size_t>::invalid();
RCP<const Comm<int> > comm = getDefaultComm();
EXTRACT_LIB(comm,M) // returns mylib
RCP<const Xpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > map3n =
Xpetra::UnitTestHelpers::createContigMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(mylib, INVALID,3,comm);
const Mag M0 = ScalarTraits<Mag>::zero();
const Scalar S1 = ScalarTraits<Scalar>::one();
const Scalar S0 = ScalarTraits<Scalar>::zero();
{
// case 1: C = S1*A@B ('@' denotes element-wise multiplication)
// C has 2 vectors, A has 1 vector, B has 2 vectors.
// A and B will be filled with 1s, so C should get filled with 1s.
V A(map3n,1);
MV B(map3n,2),
C(map3n,2);
// fill multivectors with ones
A.putScalar(ScalarTraits<Scalar>::one());
B.putScalar(ScalarTraits<Scalar>::one());
// fill expected answers Array
Teuchos::Array<Scalar> check2(6,1); // each entry (of six) is 1
// test
ArrayRCP<const Scalar> tmpView;
C.elementWiseMultiply(S1, A, B, S0);
tmpView = C.get1dView();
TEST_COMPARE_FLOATING_ARRAYS(tmpView(0,6),check2,M0);
}
#endif // HAVE_XPETRA_TPETRA
}
////
TEUCHOS_UNIT_TEST_TEMPLATE_7_DECL( MultiVector, BadConstAA, M, MV, V, Scalar, LocalOrdinal, GlobalOrdinal , Node )
{
// constructor takes ArrayView<ArrayView<Scalar> A, NumVectors
// A.size() == NumVectors
// A[i].size() >= MyLength
const global_size_t INVALID = OrdinalTraits<global_size_t>::invalid();
RCP<const Comm<int> > comm = getDefaultComm();
EXTRACT_LIB(comm,M) // returns mylib
// create a Map
// multivector has two vectors, each proc having two values per vector
RCP<const Xpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > map2 =
Xpetra::UnitTestHelpers::createContigMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(mylib, INVALID,2,comm);
RCP<const Xpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > map3 =
Xpetra::UnitTestHelpers::createContigMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(mylib, INVALID,3,comm);
// we need 4 scalars to specify values on each proc
Array<Scalar> values(4);
Array<ArrayView<const Scalar> > arrOfarr(2,ArrayView<const Scalar>(Teuchos::null));
Array<ArrayView<const Scalar> > emptyArr;
arrOfarr[0] = values(0,2);
arrOfarr[1] = values(2,2);
// arrOfarr.size() == 0
TEST_THROW(MV mvec(map2,emptyArr(),0), std::runtime_error);
#ifdef HAVE_TPETRA_DEBUG
// individual ArrayViews could be too small
TEST_THROW(MV mvec(map3,arrOfarr(),2), std::runtime_error);
#endif
}
#if 0 // not compiling in Epetra only mode. not sure why
////
TEUCHOS_UNIT_TEST_TEMPLATE_7_DECL( MultiVector, BadDot, M, MV, V, Scalar, LocalOrdinal, GlobalOrdinal , Node )
{
RCP<const Comm<int> > comm = getDefaultComm();
EXTRACT_LIB(comm,M); // returns mylib
// create a Map
const global_size_t INVALID = OrdinalTraits<global_size_t>::invalid();
RCP<const Xpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > map1 =
Xpetra::UnitTestHelpers::createContigMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(mylib, INVALID,1,comm);
RCP<const Xpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > map2 =
Xpetra::UnitTestHelpers::createContigMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(mylib, INVALID,2,comm);
{
MV mv12(map1,1),
mv21(map2,1),
mv22(map2,2);
Array<Scalar> dots(2);
#ifdef HAVE_XPETRA_TPETRA
if(mylib==Xpetra::UseTpetra) {
// incompatible maps
TEST_THROW(mv12.dot(mv21,dots()),std::runtime_error);
// incompatible numvecs
TEST_THROW(mv22.dot(mv21,dots()),std::runtime_error);
// too small output array
#ifdef TEUCHOS_DEBUG
TEST_THROW(mv22.dot(mv22,dots(0,1)),std::runtime_error);
#endif
}
#endif
}
{
V v1(map1),
v2(map2);
#ifdef HAVE_XPETRA_TPETRA
if (mylib == Xpetra::UseTpetra) {
// incompatible maps
TEST_THROW(v1.dot(v2),std::runtime_error);
TEST_THROW(v2.dot(v1),std::runtime_error);
// wrong size output array through MultiVector interface
Array<Scalar> dots(2);
#ifdef TEUCHOS_DEBUG
TEST_THROW(v1.dot(v2,dots()),std::runtime_error);
TEST_THROW(v2.dot(v1,dots()),std::runtime_error);
#endif
#endif
}
}
}
#endif // if 0 // not compiling in Epetra only mode
////
TEUCHOS_UNIT_TEST_TEMPLATE_6_DECL( MultiVector, OrthoDot, MV, V, Scalar, LocalOrdinal, GlobalOrdinal , Node )
{
#ifdef HAVE_XPETRA_TPETRA
typedef typename ScalarTraits<Scalar>::magnitudeType Mag;
const global_size_t INVALID = OrdinalTraits<global_size_t>::invalid();
//TODO FAILED: const Scalar S0 = ScalarTraits<Scalar>::zero();
const Mag M0 = ScalarTraits<Mag>::zero();
RCP<const Comm<int> > comm = getDefaultComm();
const int numImages = comm->getSize();
const size_t numLocal = 2;
const size_t numVectors = 3;
RCP<const Xpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > map = createContigMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(INVALID,numLocal,comm);
const bool zeroOut = true;
MV mvec1(map,numVectors,zeroOut),
mvec2(map,numVectors,zeroOut);
Array<Scalar> dots1(numVectors), dots2(numVectors), zeros(numVectors);
Array<Mag> norms1(numVectors), norms2(numVectors), ans(numVectors);
std::fill(zeros.begin(),zeros.end(),ScalarTraits<Scalar>::zero());
// these should be numerically orthogonal even in finite arithmetic, because both are zero. 1-norms are zero.
mvec1.dot(mvec2,dots1());
mvec2.dot(mvec1,dots2());
TEST_COMPARE_FLOATING_ARRAYS(dots2,zeros,M0);
TEST_COMPARE_FLOATING_ARRAYS(dots1,zeros,M0);
//TODO FAILED: TEST_EQUALITY_CONST( mvec1.getVector(0)->dot(*mvec2.getVector(0)), S0);
mvec1.norm1(norms1());
mvec2.norm1(norms2());
std::fill(ans.begin(), ans.end(), M0);
TEST_COMPARE_FLOATING_ARRAYS(norms1,ans,M0);
TEST_COMPARE_FLOATING_ARRAYS(norms1,ans,M0);
// replace local entries s.t.
// mvec1 = [1 1] and mvec2 = [0 0]
// [0 0] [1 1]
// still numerically orthogonal even in finite arithmetic. norms are numImages.
for (size_t j=0; j < numVectors; ++j) {
mvec1.replaceLocalValue(0,j,ScalarTraits<Scalar>::one());
mvec2.replaceGlobalValue(map->getGlobalElement(1),j,ScalarTraits<Scalar>::one());
}
mvec1.dot(mvec2,dots1());
mvec2.dot(mvec1,dots2());
TEST_COMPARE_FLOATING_ARRAYS(dots2,zeros,M0);
TEST_COMPARE_FLOATING_ARRAYS(dots1,zeros,M0);
//TODO FAILED: TEST_EQUALITY_CONST( mvec1.getVector(0)->dot(*mvec2.getVector(0)), S0);
mvec1.norm1(norms1());
mvec2.norm1(norms2());
std::fill(ans.begin(), ans.end(), as<Mag>(numImages));
TEST_COMPARE_FLOATING_ARRAYS(norms1,ans,M0);
TEST_COMPARE_FLOATING_ARRAYS(norms2,ans,M0);
// sum into local entries s.t.
// mvec1 = [1 1] and mvec2 = [-1 -1]
// [1 1] [ 1 1]
// still numerically orthogonal even in finite arithmetic. norms are 2*numImages.
for (size_t j=0; j < numVectors; ++j) {
mvec1.sumIntoLocalValue(1,j,ScalarTraits<Scalar>::one());
mvec2.sumIntoGlobalValue(map->getGlobalElement(0),j,-ScalarTraits<Scalar>::one());
}
mvec1.dot(mvec2,dots1());
mvec2.dot(mvec1,dots2());
TEST_COMPARE_FLOATING_ARRAYS(dots2,zeros,M0);
TEST_COMPARE_FLOATING_ARRAYS(dots1,zeros,M0);
//TODO FAILED: TEST_EQUALITY_CONST( mvec1.getVector(0)->dot(*mvec2.getVector(0)), S0);
mvec1.norm1(norms1());
mvec2.norm1(norms2());
std::fill(ans.begin(), ans.end(), as<Mag>(2*numImages));
TEST_COMPARE_FLOATING_ARRAYS(norms1,ans,M0);
TEST_COMPARE_FLOATING_ARRAYS(norms2,ans,M0);
#endif
}
////
TEUCHOS_UNIT_TEST_TEMPLATE_6_DECL( MultiVector, CopyView, MV, V, Scalar, LocalOrdinal, GlobalOrdinal , Node )
{
#ifdef HAVE_XPETRA_TPETRA
typedef typename ScalarTraits<Scalar>::magnitudeType Mag;
const global_size_t INVALID = OrdinalTraits<global_size_t>::invalid();
const Scalar S0 = ScalarTraits<Scalar>::zero();
const Mag M0 = ScalarTraits<Mag>::zero();
const Mag tol = errorTolSlack * ScalarTraits<Mag>::eps();
RCP<const Comm<int> > comm = getDefaultComm();
// create a Map
const size_t numLocal = 7;
const size_t numVectors = 13;
RCP<const Xpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > map = createContigMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(INVALID,numLocal,comm);
MV A(map,numVectors,false);
{
A.randomize();
TEUCHOS_TEST_FOR_EXCEPT(numVectors != 13);
Range1D inds1(8,12);
// get a subview and a subcopy of certain vectors of A
// check that the norms are the same
// change the view, delete it, verify that the copy doesn't change but that A does
A.randomize();
Array<Mag> A_bef(numVectors),
A_aft (numVectors),
Av_bef(inds1.size()),
Av_aft (inds1.size()),
Ac_bef(inds1.size()),
Ac_aft (inds1.size());
A.norm2(A_bef());
// get view and its norms
#ifdef XPETRA_NOT_IMPLEMENTED
RCP<MV> Av = A.subViewNonConst(inds1);
Av->norm2(Av_bef());
// get copy and its norms
RCP<MV> Ac = A.subCopy(inds1);
Ac->norm2(Ac_bef());
// set view to zero
Av->putScalar(ScalarTraits<Scalar>::zero());
// get norms of view
Av->norm2(Av_aft());
// free the view, copying data back to A
Av = Teuchos::null;
// get norms of A and copy
Ac->norm2(Ac_aft());
A.norm2(A_aft());
// norms of copy and view before should match norms of A
for (size_t i=0; i < as<size_t>(inds1.size()); ++i) {
TEST_FLOATING_EQUALITY( A_bef[inds1.lbound()+i], Ac_bef[i], tol );
}
TEST_COMPARE_FLOATING_ARRAYS(Ac_bef,Av_bef,tol);
// norms of copy (before and after) should match
TEST_COMPARE_FLOATING_ARRAYS(Ac_bef,Ac_aft,tol);
// norms of view after should be zero, as should corresponding A norms
for (size_t i=0; i < as<size_t>(inds1.size()); ++i) {
TEST_EQUALITY_CONST( Av_aft[i], M0 );
TEST_EQUALITY_CONST( A_aft[inds1.lbound()+i], M0 );
}
#endif
}
{
A.randomize();
TEUCHOS_TEST_FOR_EXCEPT(numVectors != 13);
Tuple<size_t,5> inds = tuple<size_t>(0,5,6,7,12);
// get a subview and a subcopy of certain vectors of A
// check that the norms are the same
// change the view, delete it, verify that the copy doesn't change but that A does
Array<Mag> A_bef(numVectors),
A_aft (numVectors),
Av_bef(inds.size()),
Av_aft (inds.size()),
Ac_bef(inds.size()),
Ac_aft (inds.size());
A.norm2(A_bef());
#ifdef XPETRA_NOT_IMPLEMENTED
// get view and its norms
RCP<MV> Av = A.subViewNonConst(inds);
Av->norm2(Av_bef());
// get copy and its norms
RCP<MV> Ac = A.subCopy(inds);
Ac->norm2(Ac_bef());
// set view to zero
Av->putScalar(ScalarTraits<Scalar>::zero());
// get norms of view
Av->norm2(Av_aft());
// free the view, copying data back to A
Av = Teuchos::null;
// get norms of A and copy
Ac->norm2(Ac_aft());
#endif
A.norm2(A_aft());
// norms of copy and view before should match norms of A
for (size_t i=0; i < as<size_t>(inds.size()); ++i) {
//TODO FAILED: TEST_FLOATING_EQUALITY( A_bef[inds[i]], Ac_bef[i], tol );
}
TEST_COMPARE_FLOATING_ARRAYS(Ac_bef,Av_bef,tol);
// norms of copy (before and after) should match
TEST_COMPARE_FLOATING_ARRAYS(Ac_bef,Ac_aft,tol);
// norms of view after should be zero, as should corresponding A norms
for (size_t i=0; i < as<size_t>(inds.size()); ++i) {
//TODO FAILED: TEST_EQUALITY_CONST( Av_aft[i], M0 );
//TODO FAILED: TEST_EQUALITY_CONST( A_aft[inds[i]], M0 );
}
}
{
A.randomize();
Array<Mag> Anorms(numVectors);
A.norm2(Anorms());
TEUCHOS_TEST_FOR_EXCEPT(numVectors != 13);
for (size_t vc=0; vc < 2; ++vc) {
// vc == 0 -> view
// vc == 1 -> copy
#ifdef XPETRA_NOT_IMPLEMENTED
for (size_t t=0; t < 4; ++t) {
// t | outer | inner
// ---|-----------|-----------
// 0 | ArrayView | ArrayView
// 1 | Range1D | ArrayView
// 2 | ArrayView | Range1D
// 3 | Range1D | Range1D
//
// outer grabs 5-9
// inner grabs 1-3 of those, corresponding to 6-8
RCP<const MV> sub1, sub2;
if ((t & 1) == 0) {
Tuple<size_t,5> inds = tuple<size_t>(5,6,7,8,9);
if (vc == 0) sub1 = A.subView(inds);
else sub1 = A.subCopy(inds);
}
else {
Range1D inds(5,9);
if (vc == 0) sub1 = A.subView(inds);
else sub1 = A.subCopy(inds);
}
TEST_EQUALITY_CONST(sub1->getNumVectors(), 5);
if ((t & 2) == 0) {
Tuple<size_t,3> inds = tuple<size_t>(1,2,3);
if (vc == 0) sub2 = sub1->subView(inds);
else sub2 = sub1->subCopy(inds);
}
else {
Range1D inds(1,3);
if (vc == 0) sub2 = sub1->subView(inds);
else sub2 = sub1->subCopy(inds);
}
TEST_EQUALITY_CONST(sub2->getNumVectors(), 3);
Array<Mag> subnorms(3);
sub2->norm2(subnorms());
TEST_COMPARE_FLOATING_ARRAYS(Anorms(6,3),subnorms(),tol);
}
#endif
}
}
{
A.randomize();
{
// check that 1dView and 1dCopy have the same values
ArrayRCP<const Scalar> view;
Array<Scalar> copy(numLocal*numVectors);
view = A.get1dView();
A.get1dCopy(copy(),numLocal);
TEST_COMPARE_FLOATING_ARRAYS(view,copy,M0);
}
{
// check that 1dView and 1dCopy have the same values
ArrayRCP<Scalar> view;
Array<Scalar> copy(numLocal*numVectors);
view = A.get1dViewNonConst();
A.get1dCopy(copy(),numLocal);
TEST_COMPARE_FLOATING_ARRAYS(view,copy,M0);
// clear view, ensure that A is zero
std::fill(view.begin(), view.end(), S0);
view = Teuchos::null;
Array<Mag> norms(numVectors), zeros(numVectors,M0);
A.norm2(norms());
TEST_COMPARE_FLOATING_ARRAYS(norms,zeros,M0);
}
A.randomize();
{
// check that 1dView and 1dCopy have the same values
ArrayRCP<ArrayRCP<const Scalar> > views;
Array<Scalar> copyspace(numLocal*numVectors);
Array<ArrayView<Scalar> > copies(numVectors);
for (size_t j=0; j < numVectors; ++j) {
copies[j] = copyspace(numLocal*j,numLocal);
}
views = A.get2dView();
A.get2dCopy(copies());
for (size_t j=0; j < numVectors; ++j) {
TEST_COMPARE_FLOATING_ARRAYS(views[j],copies[j],M0);
}
}
{
// check that 1dView and 1dCopy have the same values
Array<Scalar> copyspace(numLocal*numVectors);
Array<ArrayView<Scalar> > copies(numVectors);
for (size_t j=0; j < numVectors; ++j) {
copies[j] = copyspace(numLocal*j,numLocal);
}
ArrayRCP<ArrayRCP<Scalar> > views = A.get2dViewNonConst();
A.get2dCopy(copies());
for (size_t j=0; j < numVectors; ++j) {
TEST_COMPARE_FLOATING_ARRAYS(views[j],copies[j],M0);
}
// clear view, ensure that A is zero
for (size_t j=0; j < numVectors; ++j) {
std::fill(views[j].begin(), views[j].end(), S0);
}
views = Teuchos::null;
Array<Mag> norms(numVectors), zeros(numVectors,M0);
A.norm2(norms());
TEST_COMPARE_FLOATING_ARRAYS(norms,zeros,M0);
}
}
#endif
}
////
TEUCHOS_UNIT_TEST_TEMPLATE_6_DECL( MultiVector, OffsetView, MV, V, Scalar, LocalOrdinal, GlobalOrdinal , Node )
{
#ifdef HAVE_XPETRA_TPETRA
// typedef typename ScalarTraits<Scalar>::magnitudeType Mag;
const global_size_t INVALID = OrdinalTraits<global_size_t>::invalid();
// TODO const Scalar S0 = ScalarTraits<Scalar>::zero();
// TODO const Mag M0 = ScalarTraits<Mag>::zero();
// TODO const Mag tol = errorTolSlack * ScalarTraits<Mag>::eps();
RCP<const Comm<int> > comm = getDefaultComm();
// create a Map
const size_t numLocal1 = 3;
const size_t numLocal2 = 4;
const size_t numLocal = numLocal1 + numLocal2;
const size_t numVectors = 6;
Array<size_t> even(tuple<size_t>(1,3,5));
Array<size_t> odd(tuple<size_t>(0,2,4));
TEUCHOS_TEST_FOR_EXCEPTION( even.size() != odd.size(), std::logic_error, "Test setup assumption violated.");
RCP<const Xpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > fullMap = createContigMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(INVALID,numLocal,comm);
RCP<const Xpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > map1 = createContigMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(INVALID,numLocal1,comm);
RCP<const Xpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > map2 = createContigMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(INVALID,numLocal2,comm);
RCP<MV> A = rcp(new MV(fullMap,numVectors,false));
#ifdef XPETRA_NOT_IMPLEMENTED
{
// contig source multivector
RCP<MV> A1 = A->offsetViewNonConst(map1, 0);
RCP<MV> A2 = A->offsetViewNonConst(map2, numLocal1);
TEST_EQUALITY( A1->getLocalLength(), numLocal1 );
TEST_EQUALITY( A2->getLocalLength(), numLocal2 );
TEST_EQUALITY( A1->getNumVectors(), numVectors );
TEST_EQUALITY( A2->getNumVectors(), numVectors );
Array<Mag> A_befr(numVectors),
A1_befr(numVectors),
A2_befr(numVectors),
A_aft1(numVectors),
A1_aft1(numVectors),
A2_aft1(numVectors),
A_aft2(numVectors),
A1_aft2(numVectors),
A2_aft2(numVectors);
// compute norms of A, A1 and A2
A->randomize();
A->norm2(A_befr());
A1->norm2(A1_befr());
A2->norm2(A2_befr());
// set A1 = zeros, compute norms of A, A1 and A2
A1->putScalar(S0);
A->norm2(A_aft1());
A1->norm2(A1_aft1());
A2->norm2(A2_aft1());
// set A2 = zeros, compute norms of A, A1 and A2
A2->putScalar(S0);
A->norm2(A_aft2());
A1->norm2(A1_aft2());
A2->norm2(A2_aft2());
// change to A1 should not affect A2
// change to A2 should not affect A1
// change to A1 or A2 should change A
// A should be zero after setting A1 to zero and A2 to zero
for (size_t i=0; i<numVectors; ++i) {
TEST_EQUALITY_CONST( A_aft1[i] < A_befr[i] + tol, true ); // shrunk as A1 = 0
TEST_EQUALITY_CONST( A_aft2[i] < A_aft1[i] + tol, true ); // shurnk as A2 = 0
TEST_EQUALITY_CONST( A_aft2[i] , M0 ); // ... to zero
TEST_EQUALITY_CONST( A1_aft1[i] , M0 ); // was set to zero
TEST_EQUALITY_CONST( A1_aft2[i] , M0 ); // should not have been changed
TEST_FLOATING_EQUALITY( A2_befr[i], A2_aft1[i], tol); // should not have been changed
TEST_EQUALITY_CONST( A2_aft2[i] , M0 ); // was set to zero
}
}
#endif
#ifdef XPETRA_NOT_IMPLEMENTED
{
// non-contig source multivector
RCP<MV> A1e = A->subViewNonConst(even)->offsetViewNonConst(map1, 0);
RCP<MV> A2e = A->subViewNonConst(even)->offsetViewNonConst(map2, numLocal1);
RCP<MV> A1o = A->subViewNonConst(odd)->offsetViewNonConst(map1, 0);
RCP<MV> A2o = A->subViewNonConst(odd)->offsetViewNonConst(map2, numLocal1);
TEST_EQUALITY( A1e->getLocalLength(), numLocal1 );
TEST_EQUALITY( A1o->getLocalLength(), numLocal1 );
TEST_EQUALITY( A2e->getLocalLength(), numLocal2 );
TEST_EQUALITY( A2o->getLocalLength(), numLocal2 );
const size_t numSubVecs = (size_t)even.size();
TEST_EQUALITY( A1e->getNumVectors(), numSubVecs );
TEST_EQUALITY( A2e->getNumVectors(), numSubVecs );
TEST_EQUALITY( A1o->getNumVectors(), numSubVecs );
TEST_EQUALITY( A2o->getNumVectors(), numSubVecs );
A->randomize();
Array<Mag> b1(numSubVecs), b2(numSubVecs), b3(numSubVecs), bw(numVectors); // before putScalar(): unchanged 1, 2, 3; whole
Array<Mag> a1(numSubVecs), a2(numSubVecs), a3(numSubVecs), aw(numVectors); // after putScalar(): ...
Array<Mag> changed(numSubVecs), zeros(numSubVecs,M0);
for (int i=0; i<4; ++i) {
ArrayView<RCP<MV> > allMVs; // (changed,three unchanged)
switch (i) {
case 0:
allMVs = tuple<RCP<MV> >(A1e,A2e,A1o,A2o); break;
case 1:
allMVs = tuple<RCP<MV> >(A2e,A1o,A2o,A1e); break;
case 2:
allMVs = tuple<RCP<MV> >(A1o,A2o,A1e,A2e); break;
case 3:
allMVs = tuple<RCP<MV> >(A2o,A1e,A2e,A1o); break;
}
allMVs[1]->norm2(b1()); allMVs[2]->norm2(b2()); allMVs[3]->norm2(b3());
A->norm2(bw());
allMVs[0]->putScalar(S0);
allMVs[0]->norm2(changed());
allMVs[1]->norm2(a1()); allMVs[2]->norm2(a2()); allMVs[3]->norm2(a3());
A->norm2(aw());
TEST_COMPARE_FLOATING_ARRAYS(b1,a1,tol);
TEST_COMPARE_FLOATING_ARRAYS(b2,a2,tol);
TEST_COMPARE_FLOATING_ARRAYS(b3,a3,tol);
TEST_COMPARE_ARRAYS(changed(), zeros());
for (size_t i=0; i<numVectors; ++i) {
TEST_EQUALITY_CONST( aw[i] < bw[i] + tol, true ); // shrunk
}
}
}
#endif
#ifdef XPETRA_NOT_IMPLEMENTED
{
RCP<const MV> A1 = A->offsetView(map1, 0);
RCP<const MV> A2 = A->offsetView(map2, numLocal1);
TEST_EQUALITY( A1->getLocalLength(), numLocal1 );
TEST_EQUALITY( A2->getLocalLength(), numLocal2 );
TEST_EQUALITY( A1->getNumVectors(), numVectors );
TEST_EQUALITY( A2->getNumVectors(), numVectors );
Array<Mag> A_bef(numVectors),
A1_bef(numVectors),
A2_bef(numVectors),
A_aft(numVectors),
A1_aft(numVectors),
A2_aft(numVectors);
// compute norms of A, A1 and A2
A->randomize();
A->norm2(A_bef());
A1->norm2(A1_bef());
A2->norm2(A2_bef());
A->putScalar(S0);
A->norm2(A_aft());
A1->norm2(A1_aft());
A2->norm2(A2_aft());
for (size_t i=0; i<numVectors; ++i) {
TEST_EQUALITY_CONST( A_bef[i] < A1_bef[i] + A2_bef[i] + tol, true );
TEST_EQUALITY_CONST( A_aft[i], S0 );
TEST_EQUALITY_CONST( A1_aft[i], S0 );
TEST_EQUALITY_CONST( A2_aft[i], S0 );
}
}
#endif
#endif
}
////
TEUCHOS_UNIT_TEST_TEMPLATE_6_DECL( MultiVector, ZeroScaleUpdate, MV, V, Scalar, LocalOrdinal, GlobalOrdinal, Node )
{
#ifdef HAVE_XPETRA_TPETRA
typedef typename ScalarTraits<Scalar>::magnitudeType Mag;
const global_size_t INVALID = OrdinalTraits<global_size_t>::invalid();
const Mag M0 = ScalarTraits<Mag>::zero();
RCP<const Comm<int> > comm = getDefaultComm();
// create a Map
const size_t numLocal = 2;
const size_t numVectors = 2;
const size_t LDA = 2;
RCP<const Xpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > map = createContigMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(INVALID,numLocal,comm);
Array<Scalar> values(6);
// values = {1, 1, 2, 2, 4, 4}
// values(0,4) = {1, 1, 2, 2} = [1 2]
// = [1 2]
// values(2,6) = {2, 2, 4, 4} = [2 4]
// = [2 4]
// a multivector A constructed from the first
// has values .5 of a multivector B constructed from the second
// then 2*A - B = 0
// we test both scale(), both update(), and norm()
values[0] = as<Scalar>(1);
values[1] = as<Scalar>(1);
values[2] = as<Scalar>(2);
values[3] = as<Scalar>(2);
values[4] = as<Scalar>(4);
values[5] = as<Scalar>(4);
MV A(map,values(0,4),LDA,numVectors),
B(map,values(2,4),LDA,numVectors);
Array<Mag> norms(numVectors), zeros(numVectors);
std::fill(zeros.begin(),zeros.end(),M0);
//
// [.... ....]
// A == [ones ones]
// [.... ....]
//
// [.... ....]
// B == [twos twos]
// [.... ....]
//
// set A2 = A
// scale it by 2 in situ
// check that it equals B: subtraction in situ
{
MV A2(A);
A2.scale(as<Scalar>(2));
A2.update(as<Scalar>(-1),B,as<Scalar>(1));
A2.norm2(norms);
TEST_COMPARE_FLOATING_ARRAYS(norms,zeros,M0);
}
// set A2 = A
// check that it equals B: scale,subtraction in situ
{
MV A2(A);
A2.update(as<Scalar>(-1),B,as<Scalar>(2));
A2.norm2(norms);
//TODO:FAILED TEST_COMPARE_FLOATING_ARRAYS(norms,zeros,M0);
}
// set C random
// set it to zero by combination with A,B
{
MV C(map,numVectors);
C.randomize();
C.update(as<Scalar>(-1),B,as<Scalar>(2),A,as<Scalar>(0));
C.norm2(norms);
//TODO:FAILED TEST_COMPARE_FLOATING_ARRAYS(norms,zeros,M0);
}
// set C random
// scale it ex-situ
// check that it equals B: subtraction in situ
// TODO this is only available with Tpetra???
/*{
MV C(map,numVectors);
C.scale(as<Scalar>(2),A);
C.update(as<Scalar>(1),B,as<Scalar>(-1));
C.norm2(norms);
//TODO:FAILED TEST_COMPARE_FLOATING_ARRAYS(norms,zeros,M0);
}*/
#endif // HAVE_XPETRA_TPETRA
}
////
#if 0 // TAW fix me
TEUCHOS_UNIT_TEST_TEMPLATE_6_DECL( MultiVector, ScaleAndAssign, MV, V, Scalar, LocalOrdinal, GlobalOrdinal, Node )
{
#ifdef HAVE_XPETRA_TPETRA
using std::endl;
typedef Teuchos::ScalarTraits<Scalar> STS;
typedef typename STS::magnitudeType Mag;
typedef Teuchos::ScalarTraits<Mag> STM;
typedef Xpetra::Map<LocalOrdinal, GlobalOrdinal, Node> map_type;
typedef Xpetra::Vector<Scalar, LocalOrdinal, GlobalOrdinal, Node> vec_type;
if (STS::isOrdinal) {
return;
}
STS::seedrandom (0); // consistent seed
const global_size_t INVALID = Teuchos::OrdinalTraits<global_size_t>::invalid ();
const Mag tol = errorTolSlack * STM::eps ();
const Mag M0 = STM::zero ();
RCP<const Comm<int> > comm = getDefaultComm ();
// create a Map
const size_t numLocal = 23;
const size_t numVectors = 11;
RCP<const map_type> map =
createContigMapWithNode<LocalOrdinal,GlobalOrdinal,Node> (INVALID, numLocal, comm);
// Use random multivector A
// Set B = A * 2 manually.
// Therefore, if C = 2*A, then C == B
// If C = A and C *= 2, then C == B
// This test operator= and all of our scale ops
// We'll do Vector and MultiVector variations
// Also, ensure that other vectors aren't changed
MV A (map, numVectors, false);
MV B (map, numVectors, false);
A.randomize();
Array<Mag> Anrms(numVectors);
A.norm2(Anrms());
// Set B = A * 2, using different techniques, depending on the value of j % 4.
//
// 0: getVector, B_j = A_j (Vector::operator=), B_j(i) *= 2
// 1: getVector, B_j(i) = 2 * A_j(i)
// 2: getVector, B_j->update (2, *A_j, 0)
// 3. A_j = A.getData(j), B_j = B.getDataNonConst(j), B_j(i) = A_j(i) * 2
TEUCHOS_TEST_FOR_EXCEPT(numVectors < 4);
for (size_t j = 0; j < numVectors; ++j) {
// assign j-th vector of B to 2 * j-th vector of A
switch (j % 4) {
case 0:
{
// B(:,j) := A(:,j), and B(i,j) *= 2 for all i.
RCP<vec_type> bj = B.getVectorNonConst (j);
RCP<const vec_type> aj = A.getVector (j);
(*bj) = (*aj);
ArrayRCP<Scalar> bjview = bj->getDataNonConst (0); // zero-th column of bj
for (size_t i = 0; i < numLocal; ++i) {
bjview[i] *= as<Scalar> (2);
}
}
break;
case 1:
{
// B(i,j) := 2 * A(i,j) for all i.
RCP<vec_type> B_j = B.getVectorNonConst (j);
RCP<const vec_type> A_j = A.getVector (j);
// View of the zero-th column of A_j is a view of the j-th column of A.
ArrayRCP<const Scalar> A_j_view = A_j->getData (0);
// View of the zero-th column of B_j is a view of the j-th column of B.
ArrayRCP<Scalar> B_j_view = B_j->getDataNonConst (0);
for (size_t i = 0; i < numLocal; ++i) {
B_j_view[i] = as<Scalar> (2) * A_j_view[i];
}
}
break;
case 2:
{
RCP<vec_type> B_j = B.getVectorNonConst (j);
RCP<const vec_type> A_j = A.getVector (j);
B_j->update (as<Scalar> (2), *A_j, STS::zero ());
}
break;
case 3:
default:
{
ArrayRCP<Scalar> bjview = B.getDataNonConst(j);
ArrayRCP<const Scalar> ajview = A.getData(j);
for (size_t i=0; i < numLocal; ++i) {
bjview[i] = as<Scalar>(2) * ajview[i];
}
}
break;
}
}
// Check that A wasn't modified
out << "Check that A wasn't modified" << endl;
{
Teuchos::OSTab tab1 (out);
Array<Mag> Anrms_aft(numVectors);
A.norm2(Anrms_aft());
TEST_COMPARE_FLOATING_ARRAYS(Anrms(),Anrms_aft(),tol);
}
// Check that C.Scale(2, A) results in C == B
out << "Check that C.scale(2, A) results in C == B" << endl;
{
Teuchos::OSTab tab1 (out);
MV C (map, numVectors, false);
C.scale (as<Scalar> (2), A);
C.update (-1.0, B, 1.0); // C := C - B
Array<Mag> Cnorms(numVectors), zeros(numVectors,M0);
C.norm2(Cnorms());
TEST_COMPARE_FLOATING_ARRAYS(Cnorms(),zeros,tol);
}
out << "Check that A wasn't modified" << endl;
{
Teuchos::OSTab tab1 (out);
Array<Mag> Anrms_aft (numVectors);
A.norm2 (Anrms_aft ());
TEST_COMPARE_FLOATING_ARRAYS( Anrms (), Anrms_aft (), tol);
}
// Check that C = A, C.scale(2) results in C == B
out << "Check that C = A, C.scale(2) results in C == B" << endl;
{
Teuchos::OSTab tab1 (out);
MV C (map, numVectors, false);
C = A;
C.scale (as<Scalar> (2));
C.update (-1.0, B, 1.0);
Array<Mag> Cnorms(numVectors), zeros(numVectors,M0);
C.norm2(Cnorms());
TEST_COMPARE_FLOATING_ARRAYS(Cnorms(),zeros,tol);
}
out << "Check that A wasn't modified" << endl;
{
Teuchos::OSTab tab1 (out);
Array<Mag> Anrms_aft (numVectors);
A.norm2 (Anrms_aft ());
TEST_COMPARE_FLOATING_ARRAYS( Anrms (), Anrms_aft (), tol);
}
// Check that C = A, C_j.scale(2) for all j, results in C == B
out << "Check that C = A, C_j.scale(2) for all j, results in C == B" << endl;
{
Teuchos::OSTab tab1 (out);
MV C(map,numVectors,false);
C = A;
for (size_t j = 0; j < numVectors; ++j) {
RCP<vec_type> C_j = C.getVectorNonConst (j);
C_j->scale (as<Scalar> (2));
}
C.update (-1.0, B, 1.0);
Array<Mag> Cnorms(numVectors), zeros(numVectors,M0);
C.norm2(Cnorms());
TEST_COMPARE_FLOATING_ARRAYS(Cnorms(),zeros,tol);
}
out << "Check that A wasn't modified" << endl;
{
Teuchos::OSTab tab1 (out);
Array<Mag> Anrms_aft (numVectors);
A.norm2 (Anrms_aft ());
TEST_COMPARE_FLOATING_ARRAYS( Anrms (), Anrms_aft (), tol);
}
// Check that C = A, C.scale([2, 2, ..., 2]) results in C == B
out << "Check that C = A, C.scale([2, 2, ..., 2]) results in C == B" << endl;
{
Teuchos::OSTab tab1 (out);
MV C(map,numVectors,false);
C = A;
Array<Scalar> twos(numVectors,as<Scalar>(2));
C.scale(twos());
C.update(-1.0,B,1.0);
Array<Mag> Cnorms(numVectors), zeros(numVectors,M0);
C.norm2(Cnorms());
TEST_COMPARE_FLOATING_ARRAYS(Cnorms(),zeros,tol);
}
out << "Check that A wasn't modified" << endl;
{
Teuchos::OSTab tab1 (out);
Array<Mag> Anrms_aft (numVectors);
A.norm2 (Anrms_aft ());
TEST_COMPARE_FLOATING_ARRAYS( Anrms (), Anrms_aft (), tol);
}
#endif // HAVE_XPETRA_TPETRA
}
#endif // fix me!
////
TEUCHOS_UNIT_TEST_TEMPLATE_6_DECL( Vector, ZeroScaleUpdate, MV, V, Scalar, LocalOrdinal, GlobalOrdinal, Node )
{
#ifdef HAVE_XPETRA_TPETRA
typedef typename ScalarTraits<Scalar>::magnitudeType Mag;
const global_size_t INVALID = OrdinalTraits<global_size_t>::invalid();
const Mag M0 = ScalarTraits<Mag>::zero();
RCP<const Comm<int> > comm = getDefaultComm();
// create a Map
RCP<const Xpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > map = createContigMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(INVALID,2,comm);
Array<Scalar> values(6);
// values = {1, 1, 2, 2}
// values(0,2) = {1, 1} = [1]
// = [1]
// values(2,2) = {2, 2} = [2]
// = [2]
// a vector A constructed from the first
// has values .5 of a vector B constructed from the second
// thus 2*A - B = 0
// we test both scale(), both update(), and norm()
values[0] = as<Scalar>(1);
values[1] = as<Scalar>(1);
values[2] = as<Scalar>(2);
values[3] = as<Scalar>(2);
V A(map,values(0,2)),
B(map,values(2,2));
Mag norm;
Array<Mag> norms(1);
//
// [....]
// A == [ones]
// [....]
//
// [....]
// B == [twos]
// [....]
//
// set A2 = A
// scale it by 2 in situ
// check that it equals B: subtraction in situ
{
V A2(A);
A2.scale(as<Scalar>(2));
A2.update(as<Scalar>(-1),B,as<Scalar>(1));
norm = A2.norm2(); A2.norm2(norms());
TEST_EQUALITY(norm,M0);
TEST_EQUALITY(norm,norms[0]);
}
// set A2 = A
// check that it equals B: scale,subtraction in situ
{
V A2(A);
A2.update(as<Scalar>(-1),B,as<Scalar>(2));
norm = A2.norm2(); A2.norm2(norms());
//TODO FAILED: TEST_EQUALITY(norm,M0);
//TODO FAILED: TEST_EQUALITY(norm,norms[0]);
}
// set C random
// set it to zero by combination with A,B
{
V C(map);
C.randomize();
C.update(as<Scalar>(-1),B,as<Scalar>(2),A,as<Scalar>(0));
norm = C.norm2(); C.norm2(norms());
//TODO FAILED: TEST_EQUALITY(norm,M0);
//TODO FAILED: TEST_EQUALITY(norm,norms[0]);
}
// set C random
// scale it ex-situ
// check that it equals B: subtraction in situ
{ // TODO only available with Tpetra??
V C(map);
C.randomize();
C.scale(as<Scalar>(2),A);
C.update(as<Scalar>(1),B,as<Scalar>(-1));
norm = C.norm2(); C.norm2(norms());
//TODO FAILED: TEST_EQUALITY(norm,M0);
//TODO FAILED: TEST_EQUALITY(norm,norms[0]);
}
#endif //HAVE_XPETRA_TPETRA
}
////
TEUCHOS_UNIT_TEST_TEMPLATE_6_DECL( MultiVector, CopyConst, MV, V, Scalar, LocalOrdinal, GlobalOrdinal , Node )
{
#ifdef HAVE_XPETRA_TPETRA
typedef typename ScalarTraits<Scalar>::magnitudeType Mag;
const global_size_t INVALID = OrdinalTraits<global_size_t>::invalid();
const Mag M0 = ScalarTraits<Mag>::zero();
RCP<const Comm<int> > comm = getDefaultComm();
// create a Map
const size_t numLocal = 13;
const size_t numVectors = 7;
RCP<const Xpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > map = createContigMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(INVALID,numLocal,comm);
{
// create random MV
MV mvorig(map,numVectors);
mvorig.randomize();
// create non-const subview, test copy constructor
TEUCHOS_TEST_FOR_EXCEPT(numVectors != 7);
Tuple<size_t,3> inds = tuple<size_t>(1,3,5);
#ifdef XPETRA_NOT_IMPLEMENTED
RCP<MV> mvview = mvorig.subViewNonConst(inds);
#endif
Array<Mag> norig(numVectors), nsub(inds.size()), ncopy(inds.size());
mvorig.normInf(norig());
for (size_t j=0; j < as<size_t>(inds.size()); ++j) {
nsub[j] = norig[inds[j]];
}
#ifdef XPETRA_NOT_IMPLEMENTED
MV mvcopy(*mvview);
mvcopy.normInf(ncopy());
TEST_COMPARE_FLOATING_ARRAYS(ncopy,nsub,M0);
// reset both the view and the copy of the view, ensure that they are independent
Teuchos::Array<Mag> nsub_aft(inds.size()), ones(inds.size(),as<Mag>(1));
Teuchos::Array<Mag> ncopy_aft(inds.size()), twos(inds.size(),as<Mag>(2));
mvview->putScalar(as<Scalar>(1));
mvcopy.putScalar(as<Scalar>(2));
mvview->normInf(nsub_aft());
mvcopy.normInf(ncopy_aft());
TEST_COMPARE_FLOATING_ARRAYS(nsub_aft,ones,M0);
TEST_COMPARE_FLOATING_ARRAYS(ncopy_aft,twos,M0);
#endif
}
{
// create random MV
MV morig(map,numVectors);
morig.randomize();
// test copy constructor with
// copy it
MV mcopy1(morig), mcopy2(morig);
// verify that all three have identical values
Array<Mag> norig(numVectors), ncopy1(numVectors), ncopy2(numVectors);
morig.normInf(norig);
mcopy1.normInf(ncopy1);
mcopy2.normInf(ncopy2);
TEST_COMPARE_FLOATING_ARRAYS(norig,ncopy1,M0);
TEST_COMPARE_FLOATING_ARRAYS(norig,ncopy2,M0);
// modify all three
morig.putScalar(as<Scalar>(0));
mcopy1.putScalar(as<Scalar>(1));
mcopy2.putScalar(as<Scalar>(2));
// compute norms, check
Array<Mag> zeros(numVectors,as<Mag>(0)), ones(numVectors,as<Mag>(1)), twos(numVectors,as<Mag>(2));
morig.normInf(norig);
mcopy1.normInf(ncopy1);
mcopy2.normInf(ncopy2);
//TODO:FAILED TEST_COMPARE_FLOATING_ARRAYS(norig,zeros,M0);
// TEST_COMPARE_FLOATING_ARRAYS(ncopy1,ones,M0);
// TEST_COMPARE_FLOATING_ARRAYS(ncopy2,twos,M0);
}
#endif // HAVE_XPETRA_TPETRA
}
////
TEUCHOS_UNIT_TEST_TEMPLATE_6_DECL( Vector, CopyConst, MV, V, Scalar, LocalOrdinal, GlobalOrdinal , Node )
{
#ifdef HAVE_XPETRA_TPETRA
typedef typename ScalarTraits<Scalar>::magnitudeType Magnitude;
const global_size_t INVALID = OrdinalTraits<global_size_t>::invalid();
RCP<const Comm<int> > comm = getDefaultComm();
// create a Map
RCP<const Xpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > map = createContigMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(INVALID,2,comm);
// create random MV
V morig(map);
morig.randomize();
// copy it
V mcopy1(morig), mcopy2(morig);
// verify that all three have identical values
Magnitude norig, ncopy1, ncopy2;
norig = morig.normInf();
ncopy1 = mcopy1.normInf();
ncopy2 = mcopy2.normInf();
TEST_EQUALITY(norig,ncopy1);
TEST_EQUALITY(norig,ncopy2);
TEST_EQUALITY(ncopy1,ncopy2);
// modify all three
morig.putScalar(as<Scalar>(0));
mcopy1.putScalar(as<Scalar>(1));
mcopy2.putScalar(as<Scalar>(2));
// compute norms
norig = morig.normInf();
ncopy1 = mcopy1.normInf();
ncopy2 = mcopy2.normInf();
// check them
//TODO FAILED: TEST_EQUALITY(norig, as<Scalar>(0));
//TODO FAILED: TEST_EQUALITY(ncopy1,as<Scalar>(1));
//TODO FAILED: TEST_EQUALITY(ncopy2,as<Scalar>(2));
#endif
}
////
TEUCHOS_UNIT_TEST_TEMPLATE_6_DECL( Vector, Indexing, MV, V, Scalar, LocalOrdinal, GlobalOrdinal , Node )
{
#ifdef HAVE_XPETRA_TPETRA
typedef ScalarTraits<Scalar> SCT;
typedef typename SCT::magnitudeType Magnitude;
const global_size_t INVALID = OrdinalTraits<global_size_t>::invalid();
RCP<const Comm<int> > comm = getDefaultComm();
// create a Map
RCP<const Xpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > map = createContigMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(INVALID,100,comm);
// create two random Vector objects
V v1(map), v2(map);
v1.randomize();
v2.randomize();
// set values in both to 1.0
// for the first, do via putScalar()
// the the second, do manually, looping over all elements
// verify that both have identical values
v1.putScalar(SCT::one());
{
ArrayRCP<Scalar> view = v2.get1dViewNonConst();
for (typename ArrayRCP<Scalar>::iterator v = view.begin(); v != view.end(); ++v) {
*v = SCT::one();
}
view = Teuchos::null;
}
Magnitude err;
// subtract v2 from v1; this should result in v1 = zeros
v1.update(-1.0,v2,1.0);
err = v1.norm2();
TEST_EQUALITY_CONST(err,SCT::zero());
#endif
}
////
TEUCHOS_UNIT_TEST_TEMPLATE_6_DECL( MultiVector, SingleVecNormalize, MV, V, Scalar, LocalOrdinal, GlobalOrdinal, Node )
{
#ifdef HAVE_XPETRA_TPETRA
// this documents a usage case in Anasazi::SVQBOrthoManager, which was failing
// error turned out to be a neglected return in both implementations of update(),
// after passing the buck to scale() in the case of alpha==0 or beta==0 or gamma=0
if (ScalarTraits<Scalar>::isOrdinal) return;
typedef typename ScalarTraits<Scalar>::magnitudeType Magnitude;
const global_size_t INVALID = OrdinalTraits<global_size_t>::invalid();
const Magnitude M1 = ScalarTraits<Magnitude>::one();
//TODO unused: const Magnitude M0 = ScalarTraits<Magnitude>::zero();
RCP<const Comm<int> > comm = getDefaultComm();
// create a Map
const size_t numLocal = 10;
const size_t numVectors = 6;
RCP<const Xpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > map = createContigMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(INVALID,numLocal,comm);
// create random MV
MV mv(map,numVectors);
mv.randomize();
// compute the norms
Array<Magnitude> norms(numVectors);
mv.norm2(norms());
#ifdef XPETRA_NOT_IMPLEMENTED
for (size_t j=0; j<numVectors; ++j) {
// get a view of column j, normalize it using update()
RCP<MV> mvj = mv.subViewNonConst(tuple<size_t>(j));
switch (j) {
case 0:
mvj->scale( M1/norms[j] );
break;
case 1:
mvj->update( M1/norms[j], *mvj, M0 );
break;
case 2:
mvj->update( M0 , *mvj, M1/norms[j] );
break;
case 3:
mvj->update( M0 , *mvj, M1/norms[j], *mvj, M0 );
break;
case 4:
mvj->update( M1/norms[j], *mvj, M0 , *mvj, M0 );
break;
case 5:
mvj->update( M0 , *mvj, M0 , *mvj, M1/norms[j] );
break;
}
}
#endif
mv.norm2(norms()); // should be all one now
Array<Magnitude> ones(numVectors,M1);
//TODO FAILED: TEST_COMPARE_FLOATING_ARRAYS(norms,ones,ScalarTraits<Magnitude>::eps()*as<Magnitude>(10.));
#endif
}
////
TEUCHOS_UNIT_TEST_TEMPLATE_6_DECL( MultiVector, CountDot, MV, V, Scalar, LocalOrdinal, GlobalOrdinal , Node )
{
#ifdef HAVE_XPETRA_TPETRA
typedef typename ScalarTraits<Scalar>::magnitudeType Magnitude;
const global_size_t INVALID = OrdinalTraits<global_size_t>::invalid();
const Magnitude M0 = ScalarTraits<Magnitude>::zero();
RCP<const Comm<int> > comm = getDefaultComm();
const int numImages = comm->getSize();
// create a Map
const size_t numLocal = 2;
const size_t numVectors = 3;
RCP<const Xpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > map = createContigMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(INVALID,numLocal,comm);
Array<Scalar> values(6);
// values = {0, 0, 1, 1, 2, 2} = [0 1 2]
// [0 1 2]
// dot(values,values) = [0*0+0*0 1+1*1 + 2*2+2*2] = [0 2 8]
// summed over all procs, this is [0 2*nprocs 8*nprocs]
values[0] = as<Scalar>(0);
values[1] = as<Scalar>(0);
values[2] = as<Scalar>(1);
values[3] = as<Scalar>(1);
values[4] = as<Scalar>(2);
values[5] = as<Scalar>(2);
MV mvec1(map,values(),2,numVectors),
mvec2(map,values(),2,numVectors);
Array<Scalar> dots1(numVectors), dots2(numVectors), answer(numVectors);
answer[0] = as<Scalar>(0);
answer[1] = as<Scalar>(2*numImages);
answer[2] = as<Scalar>(8*numImages);
// do the dots
mvec1.dot(mvec2,dots1());
mvec2.dot(mvec1,dots2());
// check the answers
TEST_COMPARE_FLOATING_ARRAYS(dots1,dots2,M0);
TEST_COMPARE_FLOATING_ARRAYS(dots1,answer,M0);
#endif
}
////
TEUCHOS_UNIT_TEST_TEMPLATE_6_DECL( MultiVector, CountDotNonTrivLDA, MV, V, Scalar, LocalOrdinal, GlobalOrdinal, Node )
{
#ifdef HAVE_XPETRA_TPETRA
// same as CountDot, but the A,LDA has a non-trivial LDA (i.e., LDA != myLen)
typedef typename ScalarTraits<Scalar>::magnitudeType Magnitude;
const global_size_t INVALID = OrdinalTraits<global_size_t>::invalid();
const Magnitude M0 = ScalarTraits<Magnitude>::zero();
RCP<const Comm<int> > comm = getDefaultComm();
const int numImages = comm->getSize();
// create a Map
const size_t numLocal = 2;
const size_t numVectors = 3;
const size_t LDA = 3;
RCP<const Xpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > map = createContigMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(INVALID,numLocal,comm);
Array<Scalar> values(9);
// A = {0, 0, -1, 1, 1, -1, 2, 2, -1} = [0 1 2]
// [0 1 2]
// [-1 -1 -1]
// processed as a 2 x 3 with LDA==3, the result it
// values = [0 1 2]
// [0 1 2]
// dot(values,values) = [0*0+0*0 1+1*1 + 2*2+2*2] = [0 2 8]
// summed over all procs, this is [0 2*nprocs 8*nprocs]
values[0] = as<Scalar>(0);
values[1] = as<Scalar>(0);
values[2] = as<Scalar>(-1);
values[3] = as<Scalar>(1);
values[4] = as<Scalar>(1);
values[5] = as<Scalar>(-1);
values[6] = as<Scalar>(2);
values[7] = as<Scalar>(2);
values[8] = as<Scalar>(-1);
MV mvec1(map,values(),LDA,numVectors),
mvec2(map,values(),LDA,numVectors);
Array<Scalar> dots1(numVectors), dots2(numVectors), answer(numVectors);
answer[0] = as<Scalar>(0);
answer[1] = as<Scalar>(2*numImages);
answer[2] = as<Scalar>(8*numImages);
// do the dots
mvec1.dot(mvec2,dots1());
mvec2.dot(mvec1,dots2());
// check the answers
TEST_COMPARE_FLOATING_ARRAYS(dots1,dots2,M0);
TEST_COMPARE_FLOATING_ARRAYS(dots1,answer,M0);
#endif // HAVE_XPETRA_TPETRA
}
////
TEUCHOS_UNIT_TEST_TEMPLATE_6_DECL( MultiVector, CountNorm1, MV, V, Scalar, LocalOrdinal, GlobalOrdinal, Node )
{
#ifdef HAVE_XPETRA_TPETRA
typedef typename ScalarTraits<Scalar>::magnitudeType MT;
const global_size_t INVALID = OrdinalTraits<global_size_t>::invalid();
const MT M0 = ScalarTraits<MT>::zero();
RCP<const Comm<int> > comm = getDefaultComm();
const int numImages = comm->getSize();
// create a Map
const size_t numLocal = 2;
const size_t numVectors = 3;
RCP<const Xpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > map = createContigMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(INVALID,numLocal,comm);
Array<Scalar> values(6);
// values = {0, 0, 1, 1, 2, 2} = [0 1 2]
// [0 1 2]
// norm1(values) = [0 2 4]
// over all procs, this is [0 2*nprocs 4*nprocs]
// mean is [0 1 2]
values[0] = as<Scalar>(0);
values[1] = as<Scalar>(0);
values[2] = as<Scalar>(1);
values[3] = as<Scalar>(1);
values[4] = as<Scalar>(2);
values[5] = as<Scalar>(2);
MV mvec(map,values(),2,numVectors);
// compute, check norms
{
Array<MT> norms(numVectors), answer(numVectors);
answer[0] = as<MT>(0);
answer[1] = as<MT>(2*numImages);
answer[2] = as<MT>(4*numImages);
mvec.norm1(norms());
TEST_COMPARE_FLOATING_ARRAYS(norms,answer,M0);
}
{
// compute, check means
Array<Scalar> means(numVectors), answer(numVectors);
mvec.meanValue(means());
answer[0] = as<Scalar>(0);
answer[1] = as<Scalar>(1);
answer[2] = as<Scalar>(2);
TEST_COMPARE_FLOATING_ARRAYS(means,answer,M0);
for (size_t j=0; j < numVectors; ++j) {
//TODO FAILED: TEST_EQUALITY( mvec.getVector(j)->meanValue(), answer[j] );
}
}
#endif
}
////
TEUCHOS_UNIT_TEST_TEMPLATE_6_DECL( MultiVector, CountNormInf, MV, V, Scalar, LocalOrdinal, GlobalOrdinal, Node )
{
#ifdef HAVE_XPETRA_TPETRA
typedef typename ScalarTraits<Scalar>::magnitudeType MT;
const global_size_t INVALID = OrdinalTraits<global_size_t>::invalid();
const MT M0 = ScalarTraits<MT>::zero();
RCP<const Comm<int> > comm = getDefaultComm();
// create a Map
const size_t numLocal = 2;
const size_t numVectors = 3;
RCP<const Xpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > map = createContigMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(INVALID,numLocal,comm);
Array<Scalar> values(6);
// values = {0, 0, 1, 1, 2, 2} = [0 1 2]
// [0 1 2]
// normInf(values) = [0 1 2]
// over all procs, this is [0 1 2]
values[0] = as<Scalar>(0);
values[1] = as<Scalar>(0);
values[2] = as<Scalar>(1);
values[3] = as<Scalar>(1);
values[4] = as<Scalar>(2);
values[5] = as<Scalar>(2);
MV mvec(map,values(),2,numVectors);
Array<MT> norms(numVectors), answer(numVectors);
answer[0] = as<MT>(0);
answer[1] = as<MT>(1);
answer[2] = as<MT>(2);
// do the dots
mvec.normInf(norms());
// check the answers
TEST_COMPARE_FLOATING_ARRAYS(norms,answer,M0);
#endif
}
////
TEUCHOS_UNIT_TEST_TEMPLATE_6_DECL( MultiVector, Norm2, MV, V, Scalar, LocalOrdinal, GlobalOrdinal, Node )
{
#ifdef HAVE_XPETRA_TPETRA
typedef typename ScalarTraits<Scalar>::magnitudeType MT;
const global_size_t INVALID = OrdinalTraits<global_size_t>::invalid();
const MT M0 = ScalarTraits<MT>::zero();
RCP<const Comm<int> > comm = getDefaultComm();
// create a Map
const size_t numLocal = 13;
const size_t numVectors = 7;
RCP<const Xpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > map = createContigMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(INVALID,numLocal,comm);
MV mvec(map,numVectors);
// randomize the multivector
mvec.randomize();
// take norms; they should not be zero
Array<MT> normsRand(numVectors), normsZero(numVectors);
mvec.norm2(normsRand());
// zero the vector
mvec.putScalar(ScalarTraits<Scalar>::zero());
// take norms; they should be zero
mvec.norm2(normsZero());
// check the answers
bool local_success = true;
for (size_t i=0; i<numVectors; ++i) {
TEST_ARRAY_ELE_INEQUALITY(normsRand,i,M0);
TEST_ARRAY_ELE_EQUALITY(normsZero,i,M0);
}
success &= local_success;
#endif
}
//// TODO this code should be generalized
TEUCHOS_UNIT_TEST_TEMPLATE_6_DECL( MultiVector, BadCombinations, MV, V, Scalar, LocalOrdinal, GlobalOrdinal, Node )
{
#ifdef HAVE_XPETRA_TPETRA
typedef typename ScalarTraits<Scalar>::magnitudeType Mag;
const global_size_t INVALID = OrdinalTraits<global_size_t>::invalid();
RCP<const Comm<int> > comm = getDefaultComm();
const int myImageID = comm->getRank();
// create a Map
const Scalar rnd = ScalarTraits<Scalar>::random();
// two maps: one has two entries per process, the other disagrees on process 0
RCP<const Xpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > map1 = createContigMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(INVALID,2,comm),
map2 = createContigMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(INVALID,myImageID == 0 ? 1 : 2,comm);
// multivectors from different maps are incompatible for all ops
// multivectors from the same map are compatible only if they have the same number of
// columns
MV m1n1(map1,1), m1n2(map1,2), m2n2(map2,2), m1n2_2(map1,2);
Array<Scalar> dots(1);
Array<Mag> norms(1);
// TODO: what exceptions are on the other processors thrown?
if(myImageID==0) {
// FINISH: test multiply (both), reciprocalMultiply
TEST_THROW(m1n2.dot(m1n1,dots()), std::runtime_error); // dot
TEST_THROW(m1n2.dot(m2n2,dots()), std::runtime_error);
TEST_THROW(m1n2.abs(m1n1), std::runtime_error); // abs
TEST_THROW(m1n2.abs(m2n2), std::runtime_error);
TEST_THROW(m1n2.abs(m1n1), std::runtime_error); // abs
TEST_THROW(m1n2.abs(m2n2), std::runtime_error);
//TEST_THROW(m1n2.scale(rnd,m1n1), std::runtime_error); // abs // TODO only available with Tpetra??
//TEST_THROW(m1n2.scale(rnd,m2n2), std::runtime_error);
TEST_THROW(m1n2.update(rnd,m1n1,rnd), std::runtime_error); // update(alpha,A,beta)
TEST_THROW(m1n2.update(rnd,m2n2,rnd), std::runtime_error);
TEST_THROW(m1n2.update(rnd,m2n2 ,rnd,m1n2_2,rnd), std::runtime_error); // update(alpha,A,beta,B,gamma) // A incompat
TEST_THROW(m1n2.update(rnd,m2n2 ,rnd,m1n2_2,rnd), std::runtime_error); // incompt is length // A incompat
TEST_THROW(m1n2.update(rnd,m1n2_2,rnd,m2n2 ,rnd), std::runtime_error); // B incompat
TEST_THROW(m1n2.update(rnd,m1n2_2,rnd,m2n2 ,rnd), std::runtime_error); // B incompat
TEST_THROW(m1n2.update(rnd,m2n2 ,rnd,m2n2 ,rnd), std::runtime_error); // A,B incompat
TEST_THROW(m1n2.update(rnd,m2n2 ,rnd,m2n2 ,rnd), std::runtime_error); // A,B incompat
TEST_THROW(m1n2.update(rnd,m1n1 ,rnd,m1n2_2,rnd), std::runtime_error); // incompt is numVecs // A incompat
TEST_THROW(m1n2.update(rnd,m1n1 ,rnd,m1n2_2,rnd), std::runtime_error); // A incompat
TEST_THROW(m1n2.update(rnd,m1n2_2,rnd,m1n1 ,rnd), std::runtime_error); // B incompat
TEST_THROW(m1n2.update(rnd,m1n2_2,rnd,m1n1 ,rnd), std::runtime_error); // B incompat
TEST_THROW(m1n2.update(rnd,m1n1 ,rnd,m1n1 ,rnd), std::runtime_error); // A,B incompat
TEST_THROW(m1n2.update(rnd,m1n1 ,rnd,m1n1 ,rnd), std::runtime_error); // A,B incompat
TEST_THROW(m1n2.reciprocal(m1n1), std::runtime_error); // reciprocal
TEST_THROW(m1n2.reciprocal(m2n2), std::runtime_error);
}
#endif
}
TEUCHOS_UNIT_TEST_TEMPLATE_7_DECL( MultiVector, Constructor_Epetra, M, MV, V, Scalar, LocalOrdinal, GlobalOrdinal, Node )
{
#ifdef HAVE_XPETRA_EPETRA
RCP<const Teuchos::Comm<int> > comm = getDefaultComm();
{
TEST_NOTHROW(M(10, 0, comm));
TEST_NOTHROW(MV(Teuchos::rcp(new M(10, 0, comm)), 3));
}
#if defined(HAVE_XPETRA_TPETRA) && defined(HAVE_TPETRA_INST_PTHREAD)
{
typedef Xpetra::EpetraMapT<GlobalOrdinal, Kokkos::Compat::KokkosThreadsWrapperNode> mm;
TEST_THROW(mm(10, 0, comm), Xpetra::Exceptions::RuntimeError);
typedef Xpetra::EpetraMultiVectorT<GlobalOrdinal, Kokkos::Compat::KokkosThreadsWrapperNode> mx;
TEST_THROW(mx(Teuchos::null, 3), Xpetra::Exceptions::RuntimeError);
}
#endif
#if defined(HAVE_XPETRA_TPETRA) && defined(HAVE_TPETRA_INST_CUDA)
{
typedef Xpetra::EpetraMapT<GlobalOrdinal, Kokkos::Compat::KokkosCudaWrapperNode> mm;
TEST_THROW(mm(10, 0, comm), Xpetra::Exceptions::RuntimeError);
typedef Xpetra::EpetraMultiVectorT<GlobalOrdinal, Kokkos::Compat::KokkosCudaWrapperNode> mx;
TEST_THROW(mx(Teuchos::null, 3), Xpetra::Exceptions::RuntimeError);
}
#endif
#endif
}
////
TEUCHOS_UNIT_TEST_TEMPLATE_7_DECL( MultiVector, Typedefs, M, MV, V, Scalar, LocalOrdinal, GlobalOrdinal, Node )
{
#ifdef HAVE_XPETRA_TPETRA
typedef typename MV::scalar_type scalar_type;
typedef typename MV::local_ordinal_type local_ordinal_type;
typedef typename MV::global_ordinal_type global_ordinal_type;
typedef typename MV::node_type node_type;
TEST_EQUALITY_CONST( (is_same< scalar_type , Scalar >::value) == true, true );
TEST_EQUALITY_CONST( (is_same< local_ordinal_type , LocalOrdinal >::value) == true, true );
TEST_EQUALITY_CONST( (is_same< global_ordinal_type , GlobalOrdinal >::value) == true, true );
TEST_EQUALITY_CONST( (is_same< node_type , Node >::value) == true, true );
#endif
}
//
// INSTANTIATIONS
//
#ifdef HAVE_XPETRA_TPETRA
#define XPETRA_TPETRA_TYPES( S, LO, GO, N) \
typedef typename Xpetra::TpetraMap<LO,GO,N> M##LO##GO##N; \
typedef typename Xpetra::TpetraMultiVector<S,LO,GO,N> MV##S##LO##GO##N; \
typedef typename Xpetra::TpetraVector<S,LO,GO,N> V##S##LO##GO##N; \
#endif
#ifdef HAVE_XPETRA_EPETRA
#define XPETRA_EPETRA_NO_ORDINAL_SCALAR_TYPES( S, LO, GO, N) \
typedef typename Xpetra::EpetraMapT<GO,N> M##LO##GO##N; \
typedef typename Xpetra::EpetraMultiVectorT<GO,N> MV##S##LO##GO##N; \
typedef typename Xpetra::EpetraVectorT<GO,N> V##S##LO##GO##N; \
#define XPETRA_EPETRA_ORDINAL_SCALAR_TYPES( S, LO, GO, N) \
typedef typename Xpetra::EpetraIntMultiVectorT<GO,N> MV##S##LO##GO##N; \
typedef typename Xpetra::EpetraIntVectorT<GO,N> V##S##LO##GO##N; \
#endif
// List of tests which run only with Tpetra
#define XP_TPETRA_MULTIVECTOR_INSTANT(S,LO,GO,N) \
TEUCHOS_UNIT_TEST_TEMPLATE_7_INSTANT( MultiVector, BadConstLDA , M##LO##GO##N , MV##S##LO##GO##N , V##S##LO##GO##N , S, LO, GO, N ) \
TEUCHOS_UNIT_TEST_TEMPLATE_7_INSTANT( MultiVector, Describable , M##LO##GO##N , MV##S##LO##GO##N , V##S##LO##GO##N , S, LO, GO, N ) \
TEUCHOS_UNIT_TEST_TEMPLATE_7_INSTANT( MultiVector, ElementWiseMultiply , M##LO##GO##N , MV##S##LO##GO##N , V##S##LO##GO##N , S, LO, GO, N ) \
TEUCHOS_UNIT_TEST_TEMPLATE_6_INSTANT( MultiVector, CopyConst , MV##S##LO##GO##N , V##S##LO##GO##N , S, LO, GO, N ) \
TEUCHOS_UNIT_TEST_TEMPLATE_6_INSTANT( Vector, CopyConst , MV##S##LO##GO##N , V##S##LO##GO##N , S, LO, GO, N ) \
TEUCHOS_UNIT_TEST_TEMPLATE_6_INSTANT( Vector, Indexing , MV##S##LO##GO##N , V##S##LO##GO##N , S, LO, GO, N ) \
TEUCHOS_UNIT_TEST_TEMPLATE_6_INSTANT( MultiVector, OrthoDot , MV##S##LO##GO##N , V##S##LO##GO##N , S, LO, GO, N ) \
TEUCHOS_UNIT_TEST_TEMPLATE_6_INSTANT( MultiVector, CountDot , MV##S##LO##GO##N , V##S##LO##GO##N , S, LO, GO, N ) \
TEUCHOS_UNIT_TEST_TEMPLATE_6_INSTANT( MultiVector, CountDotNonTrivLDA , MV##S##LO##GO##N , V##S##LO##GO##N , S, LO, GO, N ) \
TEUCHOS_UNIT_TEST_TEMPLATE_6_INSTANT( MultiVector, CountNorm1 , MV##S##LO##GO##N , V##S##LO##GO##N , S, LO, GO, N ) \
TEUCHOS_UNIT_TEST_TEMPLATE_6_INSTANT( MultiVector, CountNormInf , MV##S##LO##GO##N , V##S##LO##GO##N , S, LO, GO, N ) \
TEUCHOS_UNIT_TEST_TEMPLATE_6_INSTANT( MultiVector, Norm2 , MV##S##LO##GO##N , V##S##LO##GO##N , S, LO, GO, N ) \
TEUCHOS_UNIT_TEST_TEMPLATE_6_INSTANT( MultiVector, CopyView , MV##S##LO##GO##N , V##S##LO##GO##N , S, LO, GO, N ) \
TEUCHOS_UNIT_TEST_TEMPLATE_6_INSTANT( MultiVector, OffsetView , MV##S##LO##GO##N , V##S##LO##GO##N , S, LO, GO, N ) \
TEUCHOS_UNIT_TEST_TEMPLATE_6_INSTANT( MultiVector, ZeroScaleUpdate , MV##S##LO##GO##N , V##S##LO##GO##N , S, LO, GO, N ) \
TEUCHOS_UNIT_TEST_TEMPLATE_6_INSTANT( Vector, ZeroScaleUpdate , MV##S##LO##GO##N , V##S##LO##GO##N , S, LO, GO, N ) \
TEUCHOS_UNIT_TEST_TEMPLATE_6_INSTANT( MultiVector, BadMultiply , MV##S##LO##GO##N , V##S##LO##GO##N , S, LO, GO, N ) \
TEUCHOS_UNIT_TEST_TEMPLATE_6_INSTANT( MultiVector, SingleVecNormalize , MV##S##LO##GO##N , V##S##LO##GO##N , S, LO, GO, N ) \
TEUCHOS_UNIT_TEST_TEMPLATE_6_INSTANT( MultiVector, Multiply , MV##S##LO##GO##N , V##S##LO##GO##N , S, LO, GO, N ) \
TEUCHOS_UNIT_TEST_TEMPLATE_6_INSTANT( MultiVector, BadCombinations , MV##S##LO##GO##N , V##S##LO##GO##N , S, LO, GO, N ) \
TEUCHOS_UNIT_TEST_TEMPLATE_7_INSTANT( MultiVector, NonMemberConstructorsTpetra, M##LO##GO##N , MV##S##LO##GO##N , V##S##LO##GO##N , S, LO, GO, N ) \
TEUCHOS_UNIT_TEST_TEMPLATE_7_INSTANT( Vector, AssignmentDeepCopies , M##LO##GO##N , MV##S##LO##GO##N , V##S##LO##GO##N , S, LO, GO, N )
// List of tests which run only with Epetra
#define XP_EPETRA_MULTIVECTOR_INSTANT(S,LO,GO,N) \
TEUCHOS_UNIT_TEST_TEMPLATE_7_INSTANT( MultiVector, NonMemberConstructorsEpetra, M##LO##GO##N , MV##S##LO##GO##N , V##S##LO##GO##N , S, LO, GO, N ) \
TEUCHOS_UNIT_TEST_TEMPLATE_7_INSTANT( MultiVector, Constructor_Epetra, M##LO##GO##N , MV##S##LO##GO##N , V##S##LO##GO##N , S, LO, GO, N )
// list of all tests which run both with Epetra and Tpetra
// TODO: move more lists from the upper list to this list
#define XP_MULTIVECTOR_NO_ORDINAL_INSTANT(S,LO,GO,N) \
TEUCHOS_UNIT_TEST_TEMPLATE_7_INSTANT( MultiVector, AssignmentDeepCopies , M##LO##GO##N , MV##S##LO##GO##N , V##S##LO##GO##N , S, LO, GO, N ) \
TEUCHOS_UNIT_TEST_TEMPLATE_7_INSTANT( MultiVector, GetVector , M##LO##GO##N , MV##S##LO##GO##N , V##S##LO##GO##N , S, LO, GO, N ) \
TEUCHOS_UNIT_TEST_TEMPLATE_7_INSTANT( MultiVector, BadConstNumVecs , M##LO##GO##N , MV##S##LO##GO##N , V##S##LO##GO##N , S, LO, GO, N ) \
TEUCHOS_UNIT_TEST_TEMPLATE_7_INSTANT( MultiVector, BadConstAA , M##LO##GO##N , MV##S##LO##GO##N , V##S##LO##GO##N , S, LO, GO, N )
#define XP_MULTIVECTOR_INSTANT(S,LO,GO,N) \
TEUCHOS_UNIT_TEST_TEMPLATE_7_INSTANT( MultiVector, basic , M##LO##GO##N , MV##S##LO##GO##N , V##S##LO##GO##N , S, LO, GO, N ) \
TEUCHOS_UNIT_TEST_TEMPLATE_7_INSTANT( MultiVector, Typedefs , M##LO##GO##N , MV##S##LO##GO##N , V##S##LO##GO##N , S, LO, GO, N )
// can we relax the INT INT?
#if defined(HAVE_XPETRA_TPETRA)
#include <TpetraCore_config.h>
#include <TpetraCore_ETIHelperMacros.h>
TPETRA_ETI_MANGLING_TYPEDEFS()
TPETRA_INSTANTIATE_SLGN ( XPETRA_TPETRA_TYPES )
TPETRA_INSTANTIATE_SLGN ( XP_MULTIVECTOR_INSTANT )
// no ordinal types as scalar for testing as some tests use ScalarTraits::eps...
// TPETRA_INSTANTIATE_SLGN_NO_ORDINAL_SCALAR ( XPETRA_TPETRA_NO_ORDINAL_TYPES )
TPETRA_INSTANTIATE_SLGN_NO_ORDINAL_SCALAR ( XP_MULTIVECTOR_NO_ORDINAL_INSTANT )
TPETRA_INSTANTIATE_SLGN_NO_ORDINAL_SCALAR ( XP_TPETRA_MULTIVECTOR_INSTANT )
#endif
#if defined(HAVE_XPETRA_EPETRA)
#include "Xpetra_Map.hpp" // defines EpetraNode
typedef Xpetra::EpetraNode EpetraNode;
#ifndef XPETRA_EPETRA_NO_32BIT_GLOBAL_INDICES
XPETRA_EPETRA_NO_ORDINAL_SCALAR_TYPES(double,int,int,EpetraNode)
XPETRA_EPETRA_ORDINAL_SCALAR_TYPES(int,int,int,EpetraNode)
XP_MULTIVECTOR_NO_ORDINAL_INSTANT(double,int,int,EpetraNode)
XP_MULTIVECTOR_INSTANT(int,int,int,EpetraNode)
XP_EPETRA_MULTIVECTOR_INSTANT(double,int,int,EpetraNode)
#endif
#ifndef XPETRA_EPETRA_NO_64BIT_GLOBAL_INDICES
typedef long long LongLong;
XPETRA_EPETRA_NO_ORDINAL_SCALAR_TYPES(double,int,LongLong,EpetraNode)
XPETRA_EPETRA_ORDINAL_SCALAR_TYPES(int,int,LongLong,EpetraNode)
XP_MULTIVECTOR_INSTANT(int,int,LongLong,EpetraNode)
XP_MULTIVECTOR_NO_ORDINAL_INSTANT(double,int,LongLong,EpetraNode)
XP_EPETRA_MULTIVECTOR_INSTANT(double,int,LongLong,EpetraNode)
#endif
#endif
}
|