File: MultiVector_UnitTests.cpp

package info (click to toggle)
trilinos 12.18.1-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 825,604 kB
  • sloc: cpp: 3,352,065; ansic: 432,926; fortran: 169,495; xml: 61,903; python: 40,836; sh: 32,697; makefile: 26,612; javascript: 8,535; perl: 7,136; f90: 6,372; csh: 4,183; objc: 2,620; lex: 1,469; lisp: 810; yacc: 497; awk: 364; ml: 281; php: 145
file content (2636 lines) | stat: -rw-r--r-- 113,560 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
// @HEADER
//
// ***********************************************************************
//
//             Xpetra: A linear algebra interface package
//                  Copyright 2012 Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact
//                    Jonathan Hu       (jhu@sandia.gov)
//                    Andrey Prokopenko (aprokop@sandia.gov)
//                    Ray Tuminaro      (rstumin@sandia.gov)
//
// ***********************************************************************
//
// @HEADER
#include <Teuchos_UnitTestHarness.hpp>
#include <Xpetra_UnitTestHelpers.hpp>
#include <Teuchos_Array.hpp>
#include <Teuchos_as.hpp>
#include <Teuchos_SerialDenseMatrix.hpp>
#include <Teuchos_Tuple.hpp>
#include <Teuchos_ScalarTraits.hpp>
#include <Teuchos_OrdinalTraits.hpp>
#include <Teuchos_TypeTraits.hpp>
#include <Teuchos_Comm.hpp>
#include <Teuchos_Range1D.hpp>


#ifdef HAVE_XPETRA_TPETRA
#  include "Tpetra_Core.hpp"
#  include "Tpetra_Map.hpp"
#  include "Xpetra_TpetraMultiVector.hpp"
#  include "Xpetra_TpetraVector.hpp"
#endif
#ifdef HAVE_XPETRA_EPETRA
#  include "Xpetra_EpetraMap.hpp"
#  include "Xpetra_EpetraMultiVector.hpp"
#  include "Xpetra_EpetraVector.hpp"
#endif // HAVE_XPETRA_EPETRA

#include "Xpetra_MapFactory.hpp"
#include "Xpetra_MultiVectorFactory.hpp" // taw: include MultiVectorFactory before VectorFactory (for BlockedMultiVector definition)
#include "Xpetra_VectorFactory.hpp"
#include "Xpetra_MapExtractor.hpp"

#include "Xpetra_ConfigDefs.hpp"
#include "Xpetra_DefaultPlatform.hpp"

// FINISH: add test for MultiVector with a node containing zero local entries
// FINISH: add tests for local MultiVectors

namespace Teuchos {
  template <>
  ScalarTraits<int>::magnitudeType
  relErr( const int &s1, const int &s2 ) {
    typedef ScalarTraits<int> ST;
    return ST::magnitude(s1-s2);
  }

  template <>
  ScalarTraits<char>::magnitudeType
  relErr( const char &s1, const char &s2 ) {
    typedef ScalarTraits<char> ST;
    return ST::magnitude(s1-s2);
  }
}

namespace {
  using std::endl;
  using std::copy;
  using std::ostream_iterator;
  using std::string;

  using Teuchos::TypeTraits::is_same;
  using Teuchos::RCP;
  using Teuchos::ArrayRCP;
  using Teuchos::rcp;
  using Teuchos::null;
  using Teuchos::Array;
  using Teuchos::ArrayView;
  using Teuchos::Comm;
  using Teuchos::SerialDenseMatrix;
  using Teuchos::Range1D;
  using Teuchos::Tuple;
  using Teuchos::as;
  using Teuchos::OrdinalTraits;
  using Teuchos::ScalarTraits;
  using Teuchos::arrayView;
  using Teuchos::tuple;
  using Teuchos::NO_TRANS;
  using Teuchos::TRANS;
  using Teuchos::CONJ_TRANS;
  using Teuchos::VERB_DEFAULT;
  using Teuchos::VERB_NONE;
  using Teuchos::VERB_LOW;
  using Teuchos::VERB_MEDIUM;
  using Teuchos::VERB_HIGH;
  using Teuchos::VERB_EXTREME;

//   using Tpetra::Map;
//   using Tpetra::MultiVector;
  using Xpetra::global_size_t;
  using Xpetra::DefaultPlatform;
  using Xpetra::GloballyDistributed;

  //  using Tpetra::createContigMapWithNode;
  //  using Tpetra::createLocalMapWithNode;
#ifdef HAVE_XPETRA_TPETRA
  using Xpetra::useTpetra::createContigMapWithNode;
  using Xpetra::useTpetra::createLocalMapWithNode;
#endif

  bool testMpi = true;
  double errorTolSlack = 1.0e+2;

  TEUCHOS_STATIC_SETUP()
  {
    Teuchos::CommandLineProcessor &clp = Teuchos::UnitTestRepository::getCLP();
    clp.addOutputSetupOptions(true);
    clp.setOption(
        "test-mpi", "test-serial", &testMpi,
        "Test MPI (if available) or force test of serial.  In a serial build,"
        " this option is ignored and a serial comm is always used." );
    clp.setOption(
        "error-tol-slack", &errorTolSlack,
        "Slack off of machine epsilon used to check test results" );
  }

  RCP<const Comm<int> > getDefaultComm()
  {
    RCP<const Comm<int> > ret;
    if (testMpi) {
      ret = DefaultPlatform::getDefaultPlatform().getComm();
    }
    else {
      ret = rcp(new Teuchos::SerialComm<int>());
    }
    return ret;
  }

  //
  // UNIT TESTS
  //

  TEUCHOS_UNIT_TEST_TEMPLATE_7_DECL( MultiVector, GetVector, M, MV, V, Scalar, LocalOrdinal, GlobalOrdinal, Node )
  {

    typedef LocalOrdinal LO;
    typedef GlobalOrdinal GO;
    typedef Scalar scalar_type;
    typedef Xpetra::Map<LO, GO, Node> map_type;
    typedef Xpetra::MapFactory<LO, GO, Node> map_factory_type;
    typedef Xpetra::MultiVector<Scalar, LO, GO, Node> mv_type;
    typedef Xpetra::Vector<Scalar, LO, GO, Node> vec_type;
    typedef Xpetra::MultiVectorFactory<Scalar, LO, GO, Node> mv_factory_type;
    typedef Teuchos::ScalarTraits<Scalar> STS;
    typedef typename STS::magnitudeType magnitude_type;
    typedef Teuchos::ScalarTraits<magnitude_type> STM;

    RCP<const Comm<int> > comm = getDefaultComm ();
    EXTRACT_LIB(comm,M) // returns mylib

    const size_t numVecs = 11;

    // Create a Map for the MultiVector X, and create X.
    const LO numInd = 63;
    RCP<const map_type> map = map_factory_type::Build (mylib, numInd, 0, comm);
    RCP<mv_type> X = mv_factory_type::Build (map, numVecs);
    X->putScalar (STS::zero ());

    // Make sure that X has the correct number of columns.
    TEST_EQUALITY( X->getNumVectors (), numVecs );

    // Fill all entries of the j-th column of X with the value j.
    // Use X->getVectorNonConst(j) to get the j-th column of X.
    for (size_t j = 0; j < numVecs; ++j) {
      RCP<vec_type> X_j = X->getVectorNonConst (j);
      X_j->putScalar (as<scalar_type> (j));
    }

    const size_t numRows = map->getGlobalNumElements ();
    const magnitude_type normTol = as<magnitude_type> (numRows) * STM::eps ();

    Teuchos::Array<magnitude_type> correctNorms (numVecs);
    Teuchos::Array<magnitude_type> allAtOnceNorms (numVecs);
    Teuchos::Array<magnitude_type> oneAtATimeNorms (numVecs);

    // Calculate what the 2-norm of each column of X should be.
    for (size_t j = 0; j < numVecs; ++j) {
      correctNorms[j] = as<magnitude_type> (j) *
        STM::squareroot (as<magnitude_type> (numRows));
    }

    // Fill the Array with zeros, and use X->norm2(ArrayView) to
    // compute the 2-norm of each column of X.  Test the results.
    std::fill (allAtOnceNorms.begin (), allAtOnceNorms.end (), STM::zero ());
    X->norm2 (allAtOnceNorms);
    TEST_COMPARE_FLOATING_ARRAYS( correctNorms (), allAtOnceNorms (), normTol );

    // Use X_j->norm2() to compute the 2-norm of each column of X, and
    // use X->getVector(j) to get X_j.  Test the resulting norms.
    for (size_t j = 0; j < numVecs; ++j) {
      RCP<const vec_type> X_j = X->getVector (j);
      oneAtATimeNorms[j] = X_j->norm2 ();
    }
    TEST_COMPARE_FLOATING_ARRAYS( correctNorms (), oneAtATimeNorms (), normTol );

    // Calculate what the 1-norm of each column of X should be.
    for (size_t j = 0; j < numVecs; ++j) {
      correctNorms[j] = as<magnitude_type> (j) * as<magnitude_type> (numRows);
    }

    // Fill the Array with zeros, and use X->norm1(ArrayView) to
    // compute the 1-norm of each column of X.  Test the results.
    std::fill (allAtOnceNorms.begin (), allAtOnceNorms.end (), STM::zero ());
    X->norm1 (allAtOnceNorms);
    TEST_COMPARE_FLOATING_ARRAYS( correctNorms (), allAtOnceNorms (), normTol );

    // Use X_j->norm1() to compute the 1-norm of each column of X, and
    // use X->getVector(j) to get X_j.  Test the resulting norms.
    for (size_t j = 0; j < numVecs; ++j) {
      RCP<const vec_type> X_j = X->getVector (j);
      oneAtATimeNorms[j] = X_j->norm1 ();
    }
    TEST_COMPARE_FLOATING_ARRAYS( correctNorms (), oneAtATimeNorms (), normTol );

    // Calculate what the inf-norm of each column of X should be.
    for (size_t j = 0; j < numVecs; ++j) {
      correctNorms[j] = as<magnitude_type> (j);
    }

    // Fill the Array with zeros, and use X->normInf(ArrayView) to
    // compute the inf-norm of each column of X.  Test the results.
    std::fill (allAtOnceNorms.begin (), allAtOnceNorms.end (), STM::zero ());
    X->normInf (allAtOnceNorms);
    TEST_COMPARE_FLOATING_ARRAYS( correctNorms (), allAtOnceNorms (), normTol );

    // Use X_j->normInf() to compute the inf-norm of each column of X,
    // and use X->getVector(j) to get X_j.  Test the resulting norms.
    for (size_t j = 0; j < numVecs; ++j) {
      RCP<const vec_type> X_j = X->getVector (j);
      oneAtATimeNorms[j] = X_j->normInf ();
    }
    TEST_COMPARE_FLOATING_ARRAYS( correctNorms (), oneAtATimeNorms (), normTol );
  }

  //
  // Bug 6115 test: Ensure that Xpetra::Vector::operator= does a deep copy.
  //
  TEUCHOS_UNIT_TEST_TEMPLATE_7_DECL( Vector, AssignmentDeepCopies, M, MV, V, Scalar, LocalOrdinal, GlobalOrdinal, Node )
  {
    typedef LocalOrdinal LO;
    typedef GlobalOrdinal GO;
    typedef Scalar scalar_type;
    typedef Xpetra::Map<LO, GO, Node> map_type;
    typedef Xpetra::MapFactory<LO, GO, Node> map_factory_type;
    typedef Xpetra::Vector<Scalar, LO, GO, Node> vec_type;
    typedef Xpetra::VectorFactory<Scalar, LO, GO, Node> vec_factory_type;
    typedef Teuchos::ScalarTraits<Scalar> STS;
    typedef typename STS::magnitudeType magnitude_type;
    typedef Teuchos::ScalarTraits<magnitude_type> STM;

    RCP<const Comm<int> > comm = getDefaultComm ();
    EXTRACT_LIB(comm,M) // returns mylib

    // Create a Map, which will be the row, domain, and range Map of the matrix A.
    const LO numInd = 63;
    RCP<const map_type> map = map_factory_type::Build (mylib, numInd, 0, comm);

    RCP<vec_type> v = vec_factory_type::Build (map);
    v->putScalar (STS::one ());

    // Remember the norm of v, to make sure that neither apply() call
    // changes it.  Remember both the 2-norm and the 1-norm.
    const magnitude_type v_norm = v->norm2 ();
    const magnitude_type v_oneNorm = v->norm1 ();

    // Test the computed 1-norm of v against what we know it should
    // be.  This test ensures that we aren't just subtracting zero
    // from zero in all the tests below.
    const magnitude_type v_expectedOneNorm =
      as<magnitude_type> (map->getGlobalNumElements ());

    TEST_FLOATING_EQUALITY(
      v_expectedOneNorm,
      v_oneNorm,
      STM::squareroot (v_expectedOneNorm) * STM::eps ());

    // Keep a copy of v, to test that neither apply() call changes it.
    RCP<vec_type> vcopy = vec_factory_type::Build (map);

    // Xpetra's operator= does a deep copy, like Epetra, but unlike
    // Tpetra (as of early 2014).
    *vcopy = *v;

    // Make sure that vcopy and v have the same norm.  It's OK for the
    // norms to be slightly different, due to nondeterminism in
    // parallel collectives.
    const magnitude_type vcopy_norm = vcopy->norm2 ();
    const magnitude_type vcopy_oneNorm = vcopy->norm1 ();

    const magnitude_type norm_tol =
      static_cast<magnitude_type> (map->getGlobalNumElements ()) * STM::eps ();

    TEST_FLOATING_EQUALITY(v_norm, vcopy_norm, norm_tol);
    TEST_FLOATING_EQUALITY(v_oneNorm, vcopy_oneNorm, norm_tol);

    // Make sure that if you change vcopy, v doesn't change.  That is,
    // vcopy must be a true deep copy of v.  Do this by setting all
    // entries of the Vector to 2, using putScalar(2).
    {
      vcopy->putScalar (as<scalar_type> (2));
      // Changing all the entries from 1 to 2 should double the
      // 1-norm, but give a little wiggle room for rounding error.
      const magnitude_type two = STM::one () + STM::one ();
      // First make sure that the 1-norm of vcopy is as expected.
      TEST_FLOATING_EQUALITY(two * v_oneNorm, vcopy->norm1 (), norm_tol);
      // Now make sure that the 1-norm of v has not changed.
      TEST_FLOATING_EQUALITY(v_oneNorm, v->norm1 (), norm_tol);

      // Restore vcopy, using v.
      *vcopy = *v;
    }

    // Make sure that if you change vcopy, v doesn't change.  That is,
    // vcopy must be a true deep copy of v.  Do this by setting the
    // first local entry of the Vector to 10000, using
    // getDataNonConst(0).
    {
      Teuchos::ArrayRCP<Scalar> vcopy_data = vcopy->getDataNonConst (0);
      if (map->getNodeNumElements () != 0) {
        vcopy_data[0] += static_cast<magnitude_type> (10000.0);
      }
      // Destroy the view, so that the changes get written back to the Vector.
      vcopy_data = Teuchos::null;

      // Adding 10000 to an entry had better change the 2-norm by at least sqrt(10000) = 100.
      const magnitude_type minChange = static_cast<magnitude_type> (100.0);
      TEUCHOS_TEST_COMPARE(
        STM::magnitude (vcopy_norm - vcopy->norm2 ()), >, minChange,
        out, success);

      // Restore the original vcopy, by doing a deep copy again.
      // Xpetra's operator= does a deep copy, like Epetra, but unlike
      // Tpetra (as of early 2014).
      *vcopy = *v;

      // Make sure the original copy got restored.
      TEST_FLOATING_EQUALITY(vcopy_norm, vcopy->norm2 (), norm_tol);
    }
  }

  TEUCHOS_UNIT_TEST_TEMPLATE_7_DECL( MultiVector, AssignmentDeepCopies, M, MV, V, Scalar, LocalOrdinal, GlobalOrdinal, Node )
  {
    typedef LocalOrdinal LO;
    typedef GlobalOrdinal GO;
    typedef Scalar scalar_type;
    typedef Xpetra::Map<LO, GO, Node> map_type;
    typedef Xpetra::MapFactory<LO, GO, Node> map_factory_type;
    typedef Xpetra::MultiVector<Scalar, LO, GO, Node> mv_type;
    typedef Xpetra::MultiVectorFactory<Scalar, LO, GO, Node> mv_factory_type;
    typedef Teuchos::ScalarTraits<Scalar> STS;
    typedef typename STS::magnitudeType magnitude_type;
    typedef Teuchos::ScalarTraits<magnitude_type> STM;

    RCP<const Comm<int> > comm = getDefaultComm ();
    EXTRACT_LIB(comm,M) // returns mylib

    // Create a Map, which will be the row, domain, and range Map of the matrix A.
    const LO numInd = 63;
    RCP<const map_type> map = map_factory_type::Build (mylib, numInd, 0, comm);
    const size_t numVecs = 11;

    RCP<mv_type> X = mv_factory_type::Build (map, numVecs);
    Teuchos::Array<magnitude_type> X_correctOneNorms (numVecs);
    const GO numRows = map->getGlobalNumElements ();
    for (size_t j = 0; j < numVecs; ++j) {
      X->getVectorNonConst (j)->putScalar (as<scalar_type> (j));
      X_correctOneNorms[j] = as<magnitude_type> (numRows) * as<magnitude_type> (j);
    }

    // Remember the norms of the columns of X, to make sure that
    // MultiVector::operator= really does a deep copy.  Remember both
    // the two-norms and the one-norms.
    Teuchos::Array<magnitude_type> X_twoNorms (numVecs);
    X->norm2 (X_twoNorms ());
    Teuchos::Array<magnitude_type> X_oneNorms (numVecs);
    X->norm1 (X_oneNorms ());

    // Test the computed 1-norms of the columns of X against what we
    // know they should be.  This test ensures that we aren't just
    // subtracting zero from zero in all the tests below.
    const magnitude_type normTol =
      STM::squareroot (as<magnitude_type> (numRows)) * STM::eps ();
    TEST_COMPARE_FLOATING_ARRAYS(X_correctOneNorms (), X_oneNorms (), normTol);

    // Keep a copy of X, to test that operator= really does a deep copy.
    RCP<mv_type> X_copy = mv_factory_type::Build (map, numVecs);
    *X_copy = *X;

    // Make sure that the columns of X and X_copy have the same norms.
    Teuchos::Array<magnitude_type> X_copy_twoNorms (numVecs);
    X_copy->norm2 (X_copy_twoNorms ());
    Teuchos::Array<magnitude_type> X_copy_oneNorms (numVecs);
    X_copy->norm1 (X_copy_oneNorms ());

    TEST_COMPARE_FLOATING_ARRAYS(X_oneNorms (), X_copy_oneNorms (), normTol);
    TEST_COMPARE_FLOATING_ARRAYS(X_twoNorms (), X_copy_twoNorms (), normTol);

    // Make sure that if you change X_copy, X doesn't change.  That
    // is, X_copy must be a true deep copy of X.  Do this by setting
    // all entries of X_copy to 2, using putScalar(2).
    {
      X_copy->putScalar (as<scalar_type> (2));
      Teuchos::Array<magnitude_type> newOneNorms (numVecs);
      X_copy->norm1 (newOneNorms ());

      Teuchos::Array<magnitude_type> expectedOneNorms (numVecs);
      for (size_t j = 0; j < numVecs; ++j) {
        expectedOneNorms[j] =
          as<magnitude_type> (2) * as<magnitude_type> (numRows);
      }

      // First make sure that the 1-norms of the columns X_copy are as expected.
      TEST_COMPARE_FLOATING_ARRAYS(newOneNorms (), expectedOneNorms (), normTol);
      // Now make sure that the 1-norms of the columns of X have not changed.
      X->norm1 (newOneNorms ());
      TEST_COMPARE_FLOATING_ARRAYS(newOneNorms (), X_oneNorms (), normTol);

      // Restore X_copy to be a deep copy of X.
      *X_copy = *X;
    }
  }

  ////
  TEUCHOS_UNIT_TEST_TEMPLATE_7_DECL( MultiVector, NonMemberConstructorsEpetra, M, MV, V, Scalar, LocalOrdinal, GlobalOrdinal, Node )
  {
    // typedef typename ScalarTraits<Scalar>::magnitudeType Magnitude;
    const global_size_t INVALID = OrdinalTraits<global_size_t>::invalid();
    RCP<const Comm<int> > comm = getDefaultComm();
    EXTRACT_LIB(comm,M) // returns mylib

    // create a Map
    const size_t numLocal = 13;
    const size_t numVecs  = 7;
    RCP<const Xpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > map =
        Xpetra::UnitTestHelpers::createContigMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(mylib, INVALID,numLocal,comm);
    //Xpetra::MapFactory<LocalOrdinal,GlobalOrdinal,Node>::Build(Xpetra::UseEpetra, INVALID, numLocal, 0, comm);
#ifdef HAVE_XPETRA_EPETRA
    if(mylib==Xpetra::UseEpetra) {
      RCP<const Xpetra::EpetraMapT<GlobalOrdinal,Node> > emap = Teuchos::rcp_dynamic_cast<const Xpetra::EpetraMapT<GlobalOrdinal,Node> >(map);
      RCP<Epetra_MultiVector> mvec = Teuchos::rcp(new Epetra_MultiVector(emap->getEpetra_Map(),numVecs));
      RCP<Epetra_Vector>      vec  = Teuchos::rcp(new Epetra_Vector(emap->getEpetra_Map()));
      RCP<MV> xmv = Teuchos::rcp_dynamic_cast<MV>(Xpetra::toXpetra<GlobalOrdinal,Node>(mvec));
      //RCP<V>  xv  = Teuchos::rcp_dynamic_cast<V >(Xpetra::toXpetra<GlobalOrdinal,Node>(vec)); // there is no toXpetra for Vectors!
      TEST_EQUALITY(xmv->getNumVectors(), numVecs);
      //TEST_EQUALITY_CONST(xv->getNumVectors(), 1);
    }
#endif
  }

  ////
  TEUCHOS_UNIT_TEST_TEMPLATE_7_DECL( MultiVector, NonMemberConstructorsTpetra, M, MV, V, Scalar, LocalOrdinal, GlobalOrdinal, Node )
  {
    // typedef typename ScalarTraits<Scalar>::magnitudeType Magnitude;
    const global_size_t INVALID = OrdinalTraits<global_size_t>::invalid();
    RCP<const Comm<int> > comm = getDefaultComm();
    EXTRACT_LIB(comm,M) // returns mylib

    // create a Map
    const size_t numLocal = 13;
    const size_t numVecs  = 7;
    RCP<const Xpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > map =
        Xpetra::UnitTestHelpers::createContigMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(mylib, INVALID,numLocal,comm);

#ifdef HAVE_XPETRA_TPETRA
    if(mylib==Xpetra::UseTpetra) {
      RCP<const Xpetra::TpetraMap<LocalOrdinal,GlobalOrdinal,Node> > tmap = Teuchos::rcp_dynamic_cast<const Xpetra::TpetraMap<LocalOrdinal,GlobalOrdinal,Node> >(map);
      RCP<Tpetra::MultiVector<Scalar,LocalOrdinal,GlobalOrdinal,Node> > mvec = Tpetra::createMultiVector<Scalar,LocalOrdinal,GlobalOrdinal,Node>(tmap->getTpetra_Map(),numVecs);
      RCP<Tpetra::Vector<Scalar,LocalOrdinal,GlobalOrdinal,Node> >   vec = Tpetra::createVector<Scalar,LocalOrdinal,GlobalOrdinal,Node>(tmap->getTpetra_Map());
      TEST_EQUALITY(mvec->getNumVectors(), numVecs);
      TEST_EQUALITY_CONST(vec->getNumVectors(), 1);
      RCP<const MV> xmv = Teuchos::rcp_dynamic_cast<const MV>(Xpetra::toXpetra<Scalar,LocalOrdinal,GlobalOrdinal,Node>(mvec));
      RCP<const V>  xv  = Teuchos::rcp_dynamic_cast<const V >(Xpetra::toXpetra<Scalar,LocalOrdinal,GlobalOrdinal,Node>(vec));
      TEST_EQUALITY(xmv->getNumVectors(), numVecs);
      TEST_EQUALITY_CONST(xv->getNumVectors(), 1);
    }
#endif
  }

  ////
  TEUCHOS_UNIT_TEST_TEMPLATE_7_DECL( MultiVector, basic, M, MV, V, Scalar, LocalOrdinal, GlobalOrdinal , Node )
  {
    typedef typename ScalarTraits<Scalar>::magnitudeType Magnitude;
    const global_size_t INVALID = OrdinalTraits<global_size_t>::invalid();
    RCP<const Comm<int> > comm = getDefaultComm();
    const int numRanks = comm->getSize();
    const int myRank   = comm->getRank();
    EXTRACT_LIB(comm,M) // returns mylib
    // create a Map
    const size_t numLocal = 13;
    const size_t numVecs  = 7;
    RCP<const Xpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > map =
        Xpetra::UnitTestHelpers::createContigMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(mylib, INVALID,numLocal,comm);
    MV mvec(map,numVecs,true);
    TEST_EQUALITY( mvec.getNumVectors(), numVecs );
    TEST_EQUALITY( mvec.getLocalLength(), numLocal );
    TEST_EQUALITY( mvec.getGlobalLength(), numRanks*numLocal );

    // Norms are not computed by Epetra_IntMultiVector so far
    #ifdef HAVE_XPETRA_EPETRA
    if(!is_same<typename MV::node_type, Xpetra::EpetraNode>::value)
    #endif
    {
      if(!(is_same<typename MV::scalar_type, int>::value || is_same<typename MV::scalar_type, long long int>::value)) {
        std::cout << "Running the norm tests!" << std::endl;
        // we zeroed it out in the constructor; all norms should be zero
        Array<Magnitude> norms(numVecs), zeros(numVecs);
        std::fill(zeros.begin(),zeros.end(),ScalarTraits<Magnitude>::zero());
        mvec.norm2(norms);
        TEST_COMPARE_ARRAYS(norms,zeros);
        mvec.norm1(norms);
        TEST_COMPARE_ARRAYS(norms,zeros);
        mvec.normInf(norms);
        TEST_COMPARE_ARRAYS(norms,zeros);
      }
    }

    Scalar testValue = 2, sumValue = 3;
    LocalOrdinal  testLID = 7;
    GlobalOrdinal testGID = myRank*numLocal + testLID;
    std::cout << "myRank: " << myRank << ", testGID=" << testGID << std::endl;
    mvec.replaceLocalValue(testLID, 3, testValue);
    mvec.replaceLocalValue(testLID, 4, testValue);
    mvec.sumIntoLocalValue(testLID, 4, sumValue);
    mvec.replaceGlobalValue(testGID, 5, testValue);
    mvec.replaceGlobalValue(testGID, 6, testValue);
    mvec.sumIntoGlobalValue(testGID, 6, sumValue);
    ArrayRCP<const Scalar> replaceLocalData = mvec.getData(3);
    ArrayRCP<const Scalar> sumIntoLocalData = mvec.getData(4);
    ArrayRCP<const Scalar> replaceGlobalData = mvec.getData(5);
    ArrayRCP<const Scalar> sumIntoGlobalData = mvec.getData(6);

    if(is_same<typename MV::scalar_type, int>::value || is_same<typename MV::scalar_type, long long int>::value) {
      TEST_EQUALITY( replaceLocalData[testLID], testValue );
      TEST_EQUALITY( sumIntoLocalData[testLID], testValue + sumValue );
      TEST_EQUALITY( replaceGlobalData[testLID], testValue );
      TEST_EQUALITY( sumIntoGlobalData[testLID], testValue + sumValue );
    } else {
      TEST_FLOATING_EQUALITY( replaceLocalData[testLID], testValue, 1.0e-10 );
      TEST_FLOATING_EQUALITY( sumIntoLocalData[testLID], testValue + sumValue, 1.0e-10 );
      TEST_FLOATING_EQUALITY( replaceGlobalData[testLID], testValue, 1.0e-10 );
      TEST_FLOATING_EQUALITY( sumIntoGlobalData[testLID], testValue + sumValue, 1.0e-10 );
    }
  }

  ////
  TEUCHOS_UNIT_TEST_TEMPLATE_7_DECL( MultiVector, BadConstNumVecs, M, MV, V, Scalar, LocalOrdinal, GlobalOrdinal , Node )
  {
    const global_size_t INVALID = OrdinalTraits<global_size_t>::invalid();
    RCP<const Comm<int> > comm = getDefaultComm();
    EXTRACT_LIB(comm,M) // returns mylib
    // create a Map
    const size_t numLocal = 13;
    RCP<const Xpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > map =
        Xpetra::UnitTestHelpers::createContigMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(mylib, INVALID,numLocal,comm);
    TEST_THROW(MV mvec(map,0),  std::invalid_argument);
    if (std::numeric_limits<size_t>::is_signed) {
      TEST_THROW(MV mvec(map,INVALID), std::invalid_argument);
    }
  }

  ////
  TEUCHOS_UNIT_TEST_TEMPLATE_7_DECL( MultiVector, BadConstLDA, M, MV, V, Scalar, LocalOrdinal, GlobalOrdinal , Node )
  {
#ifdef HAVE_XPETRA_TPETRA
    // numlocal > LDA
    // ergo, the arrayview doesn't contain enough data to specify the entries
    // also, if bounds checking is enabled, check that bad bounds are caught

    const global_size_t INVALID = OrdinalTraits<global_size_t>::invalid();
    RCP<const Comm<int> > comm = getDefaultComm();
    EXTRACT_LIB(comm,M) // returns mylib
    const size_t numLocal = 2;
    const size_t numVecs = 2;
    // multivector has two vectors, each proc having two values per vector
    RCP<const Xpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > map =
        Xpetra::UnitTestHelpers::createContigMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(mylib, INVALID,numLocal,comm);

    // we need 4 scalars to specify values on each proc
    Array<Scalar> values(4);
#ifdef HAVE_TPETRA_DEBUG
    // too small an ArrayView (less than 4 values) is met with an exception, if debugging is on
    TEST_THROW(MV mvec(map,values(0,3),2,numVecs), std::runtime_error);
    // it could also be too small for the given LDA:
    TEST_THROW(MV mvec(map,values(),2+1,numVecs), std::runtime_error);
    // too small for number of entries in a Vector
    TEST_THROW(V   vec(map,values(0,1)), std::runtime_error);
#endif
    // LDA < numLocal throws an exception anytime
    TEST_THROW(MV mvec(map,values(0,4),1,numVecs), std::runtime_error);
#endif
  }

  ////
  TEUCHOS_UNIT_TEST_TEMPLATE_7_DECL( MultiVector, NonContigView, M, MV, V, Scalar, LocalOrdinal, GlobalOrdinal , Node )
  {
#ifdef HAVE_XPETRA_TPETRA
    if (ScalarTraits<Scalar>::isOrdinal) return;

    typedef typename ScalarTraits<Scalar>::magnitudeType Mag;
    const Mag tol = errorTolSlack * errorTolSlack * ScalarTraits<Mag>::eps();   // extra slack on this test; dots() seem to be a little sensitive for single precision types
    const Mag M0  = ScalarTraits<Mag>::zero();
    const global_size_t INVALID = OrdinalTraits<global_size_t>::invalid();
    RCP<const Comm<int> > comm = getDefaultComm();
    EXTRACT_LIB(comm,M) // returns mylib
    // create a Map
    const size_t numLocal = 53; // making this larger reduces the change that A below will have no non-zero entries, i.e., that C = abs(A) is still equal to A (we assume it is not)
    const size_t numVecs = 7;
    RCP<const Xpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > map =
        Xpetra::UnitTestHelpers::createContigMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(mylib, INVALID,numLocal,comm);

    //
    // we will create a non-contig subview of the vector; un-viewed vectors should not be changed
    Tuple<size_t,4> inView1 = tuple<size_t>(1,4,3,2);
    Tuple<size_t,3> exView1 = tuple<size_t>(0,5,6);
    Tuple<size_t,4> inView2 = tuple<size_t>(6,0,4,3);
    Tuple<size_t,4> exView2 = tuple<size_t>(1,2,5,7);
    const size_t numView = 4;
    TEUCHOS_TEST_FOR_EXCEPTION(numView != as<size_t>(inView1.size()), std::logic_error, "Someone ruined a test invariant.");
    TEUCHOS_TEST_FOR_EXCEPTION(numView != as<size_t>(inView1.size()), std::logic_error, "Someone ruined a test invariant."); //TODO: is it a duplication ? an error ?
    TEUCHOS_TEST_FOR_EXCEPTION(numView != as<size_t>(inView2.size()), std::logic_error, "Someone ruined a test invariant.");
    {
      // test dot, all norms, randomize
      MV mvOrig1(map,numVecs), mvOrig2(map,numVecs+1), mvWeights(map,numVecs);
      mvWeights.randomize();
      RCP<const MV> mvW1 = mvWeights.subView(tuple<size_t>(0));
      RCP<const MV> mvSubWeights = mvWeights.subView(inView1);
      mvOrig1.randomize();
      mvOrig2.randomize();
      //
      Array<Mag> nOrig2(numVecs), nOrig1(numVecs), nOrigI(numVecs), nOrigW(numVecs), nOrigW1(numVecs);
      Array<Scalar> meansOrig(numVecs), dotsOrig(numView);
      mvOrig1.norm1(nOrig1());
      mvOrig1.norm2(nOrig2());
      mvOrig1.normInf(nOrigI());
      mvOrig1.meanValue(meansOrig());
      for (size_t j=0; j < numView; ++j) {
        RCP<const V> v1 = mvOrig1.getVector(inView1[j]),
          v2 = mvOrig2.getVector(inView2[j]);
        dotsOrig[j] = v1->dot(*v2);
      }
      // create the views, compute and test
      RCP<      MV> mvView1 = mvOrig1.subViewNonConst(inView1);
      RCP<const MV> mvView2 = mvOrig2.subView(inView2);
      Array<Mag> nView2(numView), nView1(numView), nViewI(numView), nViewW(numView), nViewW1(numView);
      Array<Scalar> meansView(numView), dotsView(numView);
      mvView1->norm1(nView1());
      mvView1->norm2(nView2());
      mvView1->normInf(nViewI());
      mvView1->meanValue(meansView());
      mvView1->dot( *mvView2, dotsView() );
      for (size_t j=0; j < numView; ++j) {
        TEST_FLOATING_EQUALITY(nOrig1[inView1[j]],  nView1[j],  tol);
        TEST_FLOATING_EQUALITY(nOrig2[inView1[j]],  nView2[j],  tol);
        TEST_FLOATING_EQUALITY(nOrigI[inView1[j]],  nViewI[j],  tol);
        TEST_FLOATING_EQUALITY(meansOrig[inView1[j]], meansView[j], tol);
        TEST_FLOATING_EQUALITY(dotsOrig[j], dotsView[j], tol);
      }
      // randomize the view, compute view one-norms, test difference
      mvView2 = Teuchos::null;
      mvView1->randomize();
      Array<Mag> nView1_aft(numView);
      mvView1->norm1(nView1_aft());
      for (size_t j=0; j < numView; ++j) {
        TEST_INEQUALITY(nView1[j], nView1_aft[j]);
      }
      // release the view, test that viewed columns changed, others didn't
      mvView1 = Teuchos::null;
      Array<Mag> nOrig1_aft(numVecs);
      mvOrig1.norm1(nOrig1_aft());
      for (size_t j=0; j < as<size_t>(inView1.size()); ++j) {
        TEST_INEQUALITY(nOrig1[inView1[j]], nOrig1_aft[inView1[j]]);
      }
      for (size_t j=0; j < as<size_t>(exView1.size()); ++j) {
        TEST_FLOATING_EQUALITY(nOrig1[exView1[j]], nOrig1_aft[exView1[j]], tol);
      }
    }
    {
      MV mvOrigA(map,numVecs), mvOrigB(map,numVecs), mvOrigC(map,numVecs+1);
      mvOrigA.randomize();
      mvOrigB.randomize();
      mvOrigC.randomize();
      Array<Mag> nrmOrigA(numVecs), nrmOrigB(numVecs), nrmOrigC(numVecs+1);
      mvOrigA.norm2(nrmOrigA());
      mvOrigB.norm2(nrmOrigB());
      mvOrigC.norm2(nrmOrigC());
      RCP<MV> mvViewA = mvOrigA.subViewNonConst(inView1);
      RCP<MV> mvViewB = mvOrigB.subViewNonConst(inView1);
      RCP<MV> mvViewC = mvOrigC.subViewNonConst(inView2);
      // set C = abs(A)
      {
        Array<Scalar> mnA_bef(inView1.size()), mnC_bef(inView1.size()),
                      mnA_aft(inView1.size()), mnC_aft(inView1.size());
        mvViewA->meanValue(mnA_bef());
        mvViewC->meanValue(mnC_bef());
        mvViewC->abs(*mvViewA);
        mvViewA->meanValue(mnA_aft());
        mvViewC->meanValue(mnC_aft());
        for (size_t j=0; j < as<size_t>(inView1.size()); ++j) {
          TEST_FLOATING_EQUALITY(mnA_bef[j], mnA_aft[j], tol);
          TEST_INEQUALITY(mnC_bef[j], mnC_aft[j]);
        }
      }
      // then set A = B = C
      // good excuse for some double views
      // use full views of C and B for this, check means before and after
      // to make sure that only A and B change.
      {
        Array<Scalar> A_bef(inView1.size()), B_bef(inView1.size()), C_bef(inView2.size());
        mvViewA->meanValue(A_bef());
        mvViewB->meanValue(B_bef());
        mvViewC->meanValue(C_bef());
        RCP<MV> doubleViewA = mvViewA->subViewNonConst(Range1D(0,inView1.size()-1));
        RCP<MV> doubleViewB = mvViewB->subViewNonConst(Range1D(0,inView1.size()-1));
        RCP<const MV> doubleViewC = mvViewC->subView(Range1D(0,inView1.size()-1));
        (*doubleViewA) = (*doubleViewB) = (*doubleViewC);
        doubleViewA = Teuchos::null;
        doubleViewB = Teuchos::null;
        doubleViewC = Teuchos::null;
        Array<Scalar> A_aft(inView1.size()), B_aft(inView1.size()), C_aft(inView2.size());
        mvViewA->meanValue(A_aft());
        mvViewB->meanValue(B_aft());
        mvViewC->meanValue(C_aft());
        for (size_t j=0; j < as<size_t>(inView1.size()); ++j) {
          TEST_FLOATING_EQUALITY(C_bef[j], C_aft[j], tol);
          TEST_FLOATING_EQUALITY(C_bef[j], B_aft[j], tol);
          TEST_FLOATING_EQUALITY(C_bef[j], A_aft[j], tol);
          TEST_INEQUALITY(A_bef[j], A_aft[j]);
          TEST_INEQUALITY(B_bef[j], B_aft[j]);
        }
      }
      {
        TEUCHOS_TEST_FOR_EXCEPTION(inView1.size() != 4, std::logic_error, "Someone ruined a test invariant.");
        Tuple<size_t,4> reorder = tuple<size_t>(3,1,0,2);
        RCP<MV> dvA = mvViewA->subViewNonConst(reorder);
        RCP<MV> dvB = mvViewB->subViewNonConst(reorder);
        RCP<MV> dvC = mvViewC->subViewNonConst(reorder);
        // C == B == A
        //   C *= 2                ->  C == 2*A == 2*B            scale(alpha)
        dvC->scale( as<Scalar>(2) );
        //   A = -C + 2*A          ->  C == 2*B, A == 0           update(alpha,mv,beta)
        dvA->update(as<Scalar>(-1),*dvC, as<Scalar>(2));
        //   C = 2*A + 2*B - .5*C ->   C == B, A == 0,            update(alpha,mv,beta,mv,gamma)
        dvC->update(as<Scalar>(2),*dvA, as<Scalar>(2), *dvB, as<Scalar>(-.5));
        //   B = 0.5              ->   B = 0.5, A == 0,           putScalar(alpha)
        dvB->putScalar( as<Scalar>(0.5) );
        //   C.recip(B)           ->   C = 2, B == 0.5, A == 0,   reciprocal(mv)
        dvC->reciprocal(*dvB);
        //   B = C/2              ->   A == 0, B == 1, C == 2
        dvB->scale(as<Mag>(0.5),*dvC);
        dvA = Teuchos::null;
        dvB = Teuchos::null;
        dvC = Teuchos::null;
        Array<Mag> nrmA(4), nrmB(4), nrmC(4);
        mvViewA->norm1(nrmA()); // norm1(0)   = 0
        mvViewB->norm1(nrmB()); // norm1(1.0) = N
        mvViewC->norm1(nrmC()); // norm1(2.0) = 2 * N
        const Mag  OneN = as<Mag>(mvViewA->getGlobalLength());
        const Mag  TwoN = OneN + OneN;
        for (size_t j=0; j < 4; ++j) {
          TEST_FLOATING_EQUALITY( nrmA[j],    M0, tol );
          TEST_FLOATING_EQUALITY( nrmB[j],  OneN, tol );
          TEST_FLOATING_EQUALITY( nrmC[j],  TwoN, tol );
        }
      }
      // done with these views; clear them, ensure that only the viewed
      // vectors changed in the original multivectors
      mvViewA = Teuchos::null;
      mvViewB = Teuchos::null;
      mvViewC = Teuchos::null;
      Array<Mag> nrmOrigA_aft(numVecs), nrmOrigB_aft(numVecs), nrmOrigC_aft(numVecs+1);
      mvOrigA.norm2(nrmOrigA_aft());
      mvOrigB.norm2(nrmOrigB_aft());
      mvOrigC.norm2(nrmOrigC_aft());
      for (size_t j=0; j < as<size_t>(inView1.size()); ++j) {
        TEST_INEQUALITY(nrmOrigA[inView1[j]], nrmOrigA_aft[inView1[j]]);
        TEST_INEQUALITY(nrmOrigB[inView1[j]], nrmOrigB_aft[inView1[j]]);
        TEST_INEQUALITY(nrmOrigC[inView2[j]], nrmOrigC_aft[inView2[j]]);
      }
      for (size_t j=0; j < as<size_t>(exView1.size()); ++j) {
        TEST_FLOATING_EQUALITY(nrmOrigA[exView1[j]], nrmOrigA_aft[exView1[j]], tol);
        TEST_FLOATING_EQUALITY(nrmOrigB[exView1[j]], nrmOrigB_aft[exView1[j]], tol);
      }
      for (size_t j=0; j < as<size_t>(exView1.size()); ++j) {
        TEST_FLOATING_EQUALITY(nrmOrigC[exView2[j]], nrmOrigC_aft[exView2[j]], tol);
      }
    }
#endif
  }

  ////
  TEUCHOS_UNIT_TEST_TEMPLATE_7_DECL( MultiVector, Describable, M, MV, V, Scalar, LocalOrdinal , GlobalOrdinal, Node )
  {
#ifdef HAVE_XPETRA_TPETRA
    const LocalOrdinal INVALID = OrdinalTraits<LocalOrdinal>::invalid();
    RCP<const Comm<int> > comm = getDefaultComm();
    const int myImageID = comm->getRank();
    EXTRACT_LIB(comm,M) // returns mylib
    // create Map
    RCP<const Xpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > map =
        Xpetra::UnitTestHelpers::createContigMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(mylib, INVALID,3,comm);

    // test labeling
    const string lbl("mvecA");
    MV mvecA(map,2);
    string desc1 = mvecA.description();
    if (myImageID==0) out << desc1 << endl;
#ifdef XPETRA_NOT_IMPLEMENTED
    mvecA.setObjectLabel(lbl);
#endif
    string desc2 = mvecA.description();
    if (myImageID==0) out << desc2 << endl;
    if (myImageID==0) {
#ifdef XPETRA_NOT_IMPLEMENTED
      TEST_EQUALITY( mvecA.getObjectLabel(), lbl );
#endif
    }
    // test describing at different verbosity levels
    if (myImageID==0) out << "Describing with verbosity VERB_DEFAULT..." << endl;
    mvecA.describe(out);
    comm->barrier();
    comm->barrier();
    if (myImageID==0) out << "Describing with verbosity VERB_NONE..." << endl;
    mvecA.describe(out,VERB_NONE);
    comm->barrier();
    comm->barrier();
    if (myImageID==0) out << "Describing with verbosity VERB_LOW..." << endl;
    mvecA.describe(out,VERB_LOW);
    comm->barrier();
    comm->barrier();
    if (myImageID==0) out << "Describing with verbosity VERB_MEDIUM..." << endl;
    mvecA.describe(out,VERB_MEDIUM);
    comm->barrier();
    comm->barrier();
    if (myImageID==0) out << "Describing with verbosity VERB_HIGH..." << endl;
    mvecA.describe(out,VERB_HIGH);
    comm->barrier();
    comm->barrier();
    if (myImageID==0) out << "Describing with verbosity VERB_EXTREME..." << endl;
    mvecA.describe(out,VERB_EXTREME);
    comm->barrier();
    comm->barrier();
#endif
  }

  ////
  TEUCHOS_UNIT_TEST_TEMPLATE_6_DECL( MultiVector, BadMultiply, MV, V, Scalar, LocalOrdinal, GlobalOrdinal , Node )
  {
#ifdef HAVE_XPETRA_TPETRA
    const global_size_t INVALID = OrdinalTraits<global_size_t>::invalid();
    RCP<const Comm<int> > comm = getDefaultComm();
#ifdef XPETRA_NOT_IMPLEMENTED
    const Scalar S1 = ScalarTraits<Scalar>::one(),
                 S0 = ScalarTraits<Scalar>::zero();
#endif
    // case 1: C(local) = A^X(local) * B^X(local)  : four of these
    {
      // create local Maps
      RCP<const Xpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > map3l = createLocalMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(3,comm),
        map2l = createLocalMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(2,comm);
      MV mvecA(map3l,2),
         mvecB(map2l,3),
         mvecD(map2l,2);
      // failures, 8 combinations:
      // [NTC],[NTC]: A,B don't match
      // [NTC],[NTC]: C doesn't match A,B
#ifdef XPETRA_NOT_IMPLEMENTED
      TEST_THROW( mvecD.multiply(NO_TRANS  ,NO_TRANS  ,S1,mvecA,mvecA,S0), std::runtime_error);   // 2x2: 3x2 x 3x2
      TEST_THROW( mvecD.multiply(NO_TRANS  ,CONJ_TRANS,S1,mvecA,mvecB,S0), std::runtime_error);   // 2x2: 3x2 x 3x2
      TEST_THROW( mvecD.multiply(CONJ_TRANS,NO_TRANS  ,S1,mvecB,mvecA,S0), std::runtime_error);   // 2x2: 3x2 x 3x2
      TEST_THROW( mvecD.multiply(CONJ_TRANS,CONJ_TRANS,S1,mvecB,mvecB,S0), std::runtime_error);   // 2x2: 3x2 x 3x2
      TEST_THROW( mvecD.multiply(NO_TRANS  ,NO_TRANS  ,S1,mvecA,mvecB,S0), std::runtime_error);   // 2x2: 3x2 x 2x3
      TEST_THROW( mvecD.multiply(NO_TRANS  ,CONJ_TRANS,S1,mvecA,mvecA,S0), std::runtime_error);   // 2x2: 3x2 x 2x3
      TEST_THROW( mvecD.multiply(CONJ_TRANS,NO_TRANS  ,S1,mvecB,mvecB,S0), std::runtime_error);   // 2x2: 3x2 x 2x3
      TEST_THROW( mvecD.multiply(CONJ_TRANS,CONJ_TRANS,S1,mvecB,mvecA,S0), std::runtime_error);   // 2x2: 3x2 x 2x3
#endif
    }
    // case 2: C(local) = A^T(distr) * B  (distr)  : one of these
    {
      RCP<const Xpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > map3n = createContigMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(INVALID,3,comm),
                                            map2n = createContigMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(INVALID,2,comm);
      RCP<const Xpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > map2l = createLocalMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(2,comm),
                                            map3l = createLocalMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(3,comm);
      MV mv3nx2(map3n,2),
         mv2nx2(map2n,2),
         mv2lx2(map2l,2),
         mv2lx3(map2l,3),
         mv3lx2(map3l,2),
         mv3lx3(map3l,3);
#ifdef XPETRA_NOT_IMPLEMENTED
      // non-matching input lengths
      TEST_THROW( mv2lx2.multiply(CONJ_TRANS,NO_TRANS,S1,mv3nx2,mv2nx2,S0), std::runtime_error);   // (2 x 3n) x (2n x 2) not compat
      TEST_THROW( mv2lx2.multiply(CONJ_TRANS,NO_TRANS,S1,mv2nx2,mv3nx2,S0), std::runtime_error);   // (2 x 2n) x (3n x 2) not compat
      // non-matching output size
      TEST_THROW( mv3lx3.multiply(CONJ_TRANS,NO_TRANS,S1,mv3nx2,mv3nx2,S0), std::runtime_error);   // (2 x 3n) x (3n x 2) doesn't fit 3x3
      TEST_THROW( mv3lx2.multiply(CONJ_TRANS,NO_TRANS,S1,mv3nx2,mv3nx2,S0), std::runtime_error);   // (2 x 3n) x (3n x 2) doesn't fit 3x2
      TEST_THROW( mv2lx3.multiply(CONJ_TRANS,NO_TRANS,S1,mv3nx2,mv3nx2,S0), std::runtime_error);   // (2 x 3n) x (3n x 2) doesn't fit 2x3
#endif
    }
    // case 3: C(distr) = A  (distr) * B^X(local)  : two of these
    {
      RCP<const Xpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > map3n = createContigMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(INVALID,3,comm),
                                            map2n = createContigMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(INVALID,2,comm);
      RCP<const Xpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > map2l = createLocalMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(2,comm),
                                            map3l = createLocalMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(3,comm);
      MV mv3nx2(map3n,2),
         mv2nx2(map2n,2),
         mv2x3(map2l,3),
         mv3x2(map3l,2);
#ifdef XPETRA_NOT_IMPLEMENTED
      // non-matching input lengths
      TEST_THROW( mv3nx2.multiply(NO_TRANS,CONJ_TRANS,S1,mv3nx2,mv2x3,S0), std::runtime_error);   // (3n x 2) x (3 x 2) (trans) not compat
      TEST_THROW( mv3nx2.multiply(NO_TRANS,NO_TRANS  ,S1,mv3nx2,mv3x2,S0), std::runtime_error);   // (3n x 2) x (3 x 2) (nontrans) not compat
      // non-matching output sizes
      TEST_THROW( mv3nx2.multiply(NO_TRANS,CONJ_TRANS,S1,mv3nx2,mv3x2,S0), std::runtime_error);   // (3n x 2) x (2 x 3) doesn't fit 3nx2
      TEST_THROW( mv3nx2.multiply(NO_TRANS,NO_TRANS  ,S1,mv3nx2,mv2x3,S0), std::runtime_error);   // (3n x 2) x (2 x 3) doesn't fit 3nx2
#endif
    }
#endif
  }

  ////
  TEUCHOS_UNIT_TEST_TEMPLATE_6_DECL( MultiVector, Multiply, MV, V, Scalar, LocalOrdinal, GlobalOrdinal , Node )
  {
#ifdef HAVE_XPETRA_TPETRA
    using Teuchos::View;
    // typedef typename ScalarTraits<Scalar>::magnitudeType Mag;

    const global_size_t INVALID = OrdinalTraits<global_size_t>::invalid();
    RCP<const Comm<int> > comm = getDefaultComm();
#ifdef XPETRA_NOT_IMPLEMENTED
    const int numImages = comm->getSize();
#endif
    // create a Map
    RCP<const Xpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > map3n = createContigMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(INVALID,3,comm),
      map2n = createContigMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(INVALID,2,comm);
    RCP<const Xpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > lmap3 = createLocalMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(3,comm),
      lmap2 = createLocalMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(2,comm);
#ifdef XPETRA_NOT_IMPLEMENTED
    const Scalar S1 = ScalarTraits<Scalar>::one(),
                 S0 = ScalarTraits<Scalar>::zero();
    const Mag    M0 = ScalarTraits<Mag>::zero();
#endif
    // case 1: C(local) = A^X(local) * B^X(local)  : four of these
    // deterministic input/output
    {
      MV mv3x2l(lmap3,2),
         mv2x3l(lmap2,3),
         mv2x2l(lmap2,2),
         mv3x3l(lmap3,3);
      // fill multivectors with ones
      mv3x2l.putScalar(ScalarTraits<Scalar>::one());
      mv2x3l.putScalar(ScalarTraits<Scalar>::one());
      // fill expected answers Array
      Teuchos::Array<Scalar> check2(4,3); // each entry (of four) is the product [1 1 1]*[1 1 1]' = 3
      Teuchos::Array<Scalar> check3(9,2); // each entry (of nine) is the product [1 1]*[1 1]' = 2
      // test
      ArrayRCP<const Scalar> tmpView;
#ifdef XPETRA_NOT_IMPLEMENTED
      mv3x3l.multiply(NO_TRANS  ,NO_TRANS  ,S1,mv3x2l,mv2x3l,S0);
      tmpView = mv3x3l.get1dView(); TEST_COMPARE_FLOATING_ARRAYS(tmpView(0,9),check3,M0);
      mv2x2l.multiply(NO_TRANS  ,CONJ_TRANS,S1,mv2x3l,mv2x3l,S0);
      tmpView = mv2x2l.get1dView(); TEST_COMPARE_FLOATING_ARRAYS(tmpView(0,4),check2,M0);
      mv2x2l.multiply(CONJ_TRANS,NO_TRANS  ,S1,mv3x2l,mv3x2l,S0);
      tmpView = mv2x2l.get1dView(); TEST_COMPARE_FLOATING_ARRAYS(tmpView(0,4),check2,M0);
      mv3x3l.multiply(CONJ_TRANS,CONJ_TRANS,S1,mv2x3l,mv3x2l,S0);
      tmpView = mv3x3l.get1dView(); TEST_COMPARE_FLOATING_ARRAYS(tmpView(0,9),check3,M0);
#endif
    }
    // case 1: C(local) = A^X(local) * B^X(local)  : four of these
    // random input/output
    {
#ifdef XPETRA_NOT_IMPLEMENTED
      Array<Scalar>     tmvCopy1(6), tmvCopy2(6);
      ArrayView<Scalar> sdmView(Teuchos::null);
      MV tmv3x2(lmap3,2),
         tmv2x3(lmap2,3),
         tmv2x2(lmap2,2),
         tmv3x3(lmap3,3);
      // fill multivectors with random, get copy of contents
      tmv3x2.randomize();  tmv3x2.get1dCopy(tmvCopy1(),3);
      tmv2x3.randomize();  tmv2x3.get1dCopy(tmvCopy2(),2);
      // point SerialDenseMatrices at copies
      SerialDenseMatrix<int,Scalar> sdm3x2(View,tmvCopy1.getRawPtr(),3,3,2);
      SerialDenseMatrix<int,Scalar> sdm2x3(View,tmvCopy2.getRawPtr(),2,2,3);
      // space for answers
      SerialDenseMatrix<int,Scalar> sdm2x2(2,2), sdm3x3(3,3);
      // test: perform local Tpetra::MultiVector multiply and Teuchos::SerialDenseMatrix multiply, then check that answers are equivalent
      ArrayRCP<const Scalar> tmpView;

      {
        tmv3x3.multiply(NO_TRANS,NO_TRANS,S1,tmv3x2,tmv2x3,S0);
        sdm3x3.multiply(NO_TRANS,NO_TRANS,S1,sdm3x2,sdm2x3,S0);
        tmpView = tmv3x3.get1dView(); sdmView = arrayView(sdm3x3.values(),sdm3x3.numRows()*sdm3x3.numCols());
        TEST_COMPARE_FLOATING_ARRAYS(tmpView,sdmView,ScalarTraits<Mag>::eps() * 10.);
      }
      {
        tmv2x2.multiply(NO_TRANS,CONJ_TRANS,S1,tmv2x3,tmv2x3,S0);
        sdm2x2.multiply(NO_TRANS,CONJ_TRANS,S1,sdm2x3,sdm2x3,S0);
        tmpView = tmv2x2.get1dView(); sdmView = arrayView(sdm2x2.values(),sdm2x2.numRows()*sdm2x2.numCols());
        TEST_COMPARE_FLOATING_ARRAYS(tmpView,sdmView,ScalarTraits<Mag>::eps() * 10.);
      }
      {
        tmv2x2.multiply(CONJ_TRANS,NO_TRANS,S1,tmv3x2,tmv3x2,S0);
        sdm2x2.multiply(CONJ_TRANS,NO_TRANS,S1,sdm3x2,sdm3x2,S0);
        tmpView = tmv2x2.get1dView(); sdmView = arrayView(sdm2x2.values(),sdm2x2.numRows()*sdm2x2.numCols());
        TEST_COMPARE_FLOATING_ARRAYS(tmpView,sdmView,ScalarTraits<Mag>::eps() * 10.);
      }
      {
        tmv3x3.multiply(CONJ_TRANS,CONJ_TRANS,S1,tmv2x3,tmv3x2,S0);
        sdm3x3.multiply(CONJ_TRANS,CONJ_TRANS,S1,sdm2x3,sdm3x2,S0);
        tmpView = tmv3x3.get1dView(); sdmView = arrayView(sdm3x3.values(),sdm3x3.numRows()*sdm3x3.numCols());
        TEST_COMPARE_FLOATING_ARRAYS(tmpView,sdmView,ScalarTraits<Mag>::eps() * 10.);
      }
#endif
    }
#ifdef XPETRA_NOT_IMPLEMENTED
    // case 2: C(local) = A^T(distr) * B  (distr)  : one of these
    {
      MV mv3nx2(map3n,2),
         mv3nx3(map3n,3),
         // locals
         mv2x2(lmap2,2),
         mv2x3(lmap2,3),
         mv3x2(lmap3,2),
         mv3x3(lmap3,3);
      // fill multivectors with ones
      mv3nx3.putScalar(ScalarTraits<Scalar>::one());
      mv3nx2.putScalar(ScalarTraits<Scalar>::one());
      // fill expected answers Array
      ArrayRCP<const Scalar> tmpView;
      Teuchos::Array<Scalar> check(9,3*numImages);
      // test
      mv2x2.multiply(CONJ_TRANS,NO_TRANS,S1,mv3nx2,mv3nx2,S0);
      tmpView = mv2x2.get1dView(); TEST_COMPARE_FLOATING_ARRAYS(tmpView,check(0,tmpView.size()),M0);
      mv2x3.multiply(CONJ_TRANS,NO_TRANS,S1,mv3nx2,mv3nx3,S0);
      tmpView = mv2x3.get1dView(); TEST_COMPARE_FLOATING_ARRAYS(tmpView,check(0,tmpView.size()),M0);
      mv3x2.multiply(CONJ_TRANS,NO_TRANS,S1,mv3nx3,mv3nx2,S0);
      tmpView = mv3x2.get1dView(); TEST_COMPARE_FLOATING_ARRAYS(tmpView,check(0,tmpView.size()),M0);
      mv3x3.multiply(CONJ_TRANS,NO_TRANS,S1,mv3nx3,mv3nx3,S0);
      tmpView = mv3x3.get1dView(); TEST_COMPARE_FLOATING_ARRAYS(tmpView,check(0,tmpView.size()),M0);
    }
    // case 3: C(distr) = A  (distr) * B^X(local)  : two of these
    {
      MV mv3nx2(map3n,2),
         mv3nx3(map3n,3),
         // locals
         mv2x3(lmap2,3);
      // fill multivectors with ones
      mv2x3.putScalar(S1);
      // fill expected answers Array
      ArrayRCP<const Scalar> tmpView;
      Teuchos::Array<Scalar> check2(9,2), check3(6,3);
      // test
      mv3nx3.putScalar(S1); mv3nx2.putScalar(S1);
      mv3nx3.multiply(NO_TRANS,  NO_TRANS,S1,mv3nx2,mv2x3,S0);
      tmpView = mv3nx3.get1dView(); TEST_COMPARE_FLOATING_ARRAYS(tmpView,check2,M0);
      mv3nx3.putScalar(S1); mv3nx2.putScalar(S1);
      mv3nx2.multiply(NO_TRANS,CONJ_TRANS,S1,mv3nx3,mv2x3,S0);
      tmpView = mv3nx2.get1dView(); TEST_COMPARE_FLOATING_ARRAYS(tmpView,check3,M0);
    }
#endif
#endif // HAVE_XPETRA_TPETRA
  }

  ////
  TEUCHOS_UNIT_TEST_TEMPLATE_7_DECL( MultiVector, ElementWiseMultiply, M, MV, V, Scalar, LocalOrdinal, GlobalOrdinal , Node )
  {
#ifdef HAVE_XPETRA_TPETRA
    using Teuchos::View;
    typedef typename ScalarTraits<Scalar>::magnitudeType Mag;


    const global_size_t INVALID = OrdinalTraits<global_size_t>::invalid();
    RCP<const Comm<int> > comm = getDefaultComm();
    EXTRACT_LIB(comm,M) // returns mylib
    RCP<const Xpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > map3n =
      Xpetra::UnitTestHelpers::createContigMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(mylib, INVALID,3,comm);

    const Mag    M0 = ScalarTraits<Mag>::zero();
    const Scalar S1 = ScalarTraits<Scalar>::one();
    const Scalar S0 = ScalarTraits<Scalar>::zero();
    {
      // case 1: C = S1*A@B ('@' denotes element-wise multiplication)
      // C has 2 vectors, A has 1 vector, B has 2 vectors.
      // A and B will be filled with 1s, so C should get filled with 1s.
      V A(map3n,1);
      MV B(map3n,2),
         C(map3n,2);
      // fill multivectors with ones
      A.putScalar(ScalarTraits<Scalar>::one());
      B.putScalar(ScalarTraits<Scalar>::one());
      // fill expected answers Array
      Teuchos::Array<Scalar> check2(6,1); // each entry (of six) is 1
      // test
      ArrayRCP<const Scalar> tmpView;
      C.elementWiseMultiply(S1, A, B, S0);
      tmpView = C.get1dView();
      TEST_COMPARE_FLOATING_ARRAYS(tmpView(0,6),check2,M0);
    }
#endif // HAVE_XPETRA_TPETRA
  }

  ////
  TEUCHOS_UNIT_TEST_TEMPLATE_7_DECL( MultiVector, BadConstAA, M, MV, V, Scalar, LocalOrdinal, GlobalOrdinal , Node )
  {
    // constructor takes ArrayView<ArrayView<Scalar> A, NumVectors
    // A.size() == NumVectors
    // A[i].size() >= MyLength

    const global_size_t INVALID = OrdinalTraits<global_size_t>::invalid();
    RCP<const Comm<int> > comm = getDefaultComm();

    EXTRACT_LIB(comm,M) // returns mylib

    // create a Map
    // multivector has two vectors, each proc having two values per vector
    RCP<const Xpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > map2 =
        Xpetra::UnitTestHelpers::createContigMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(mylib, INVALID,2,comm);
    RCP<const Xpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > map3 =
        Xpetra::UnitTestHelpers::createContigMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(mylib, INVALID,3,comm);

    // we need 4 scalars to specify values on each proc
    Array<Scalar> values(4);
    Array<ArrayView<const Scalar> > arrOfarr(2,ArrayView<const Scalar>(Teuchos::null));
    Array<ArrayView<const Scalar> > emptyArr;
    arrOfarr[0] = values(0,2);
    arrOfarr[1] = values(2,2);
    // arrOfarr.size() == 0
    TEST_THROW(MV mvec(map2,emptyArr(),0), std::runtime_error);
#ifdef HAVE_TPETRA_DEBUG
    // individual ArrayViews could be too small
    TEST_THROW(MV mvec(map3,arrOfarr(),2), std::runtime_error);
#endif
  }

#if 0 // not compiling in Epetra only mode. not sure why
  ////
  TEUCHOS_UNIT_TEST_TEMPLATE_7_DECL( MultiVector, BadDot, M, MV, V, Scalar, LocalOrdinal, GlobalOrdinal , Node )
  {
    RCP<const Comm<int> > comm = getDefaultComm();
    EXTRACT_LIB(comm,M); // returns mylib
    // create a Map
    const global_size_t INVALID = OrdinalTraits<global_size_t>::invalid();
    RCP<const Xpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > map1 =
        Xpetra::UnitTestHelpers::createContigMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(mylib, INVALID,1,comm);
    RCP<const Xpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > map2 =
        Xpetra::UnitTestHelpers::createContigMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(mylib, INVALID,2,comm);
    {
      MV mv12(map1,1),
         mv21(map2,1),
         mv22(map2,2);
      Array<Scalar> dots(2);
#ifdef HAVE_XPETRA_TPETRA
      if(mylib==Xpetra::UseTpetra) {
        // incompatible maps
        TEST_THROW(mv12.dot(mv21,dots()),std::runtime_error);
        // incompatible numvecs
        TEST_THROW(mv22.dot(mv21,dots()),std::runtime_error);
        // too small output array
#ifdef TEUCHOS_DEBUG
        TEST_THROW(mv22.dot(mv22,dots(0,1)),std::runtime_error);
#endif
      }
#endif
    }
    {
      V v1(map1),
        v2(map2);
#ifdef HAVE_XPETRA_TPETRA
      if (mylib == Xpetra::UseTpetra) {
        // incompatible maps
        TEST_THROW(v1.dot(v2),std::runtime_error);
        TEST_THROW(v2.dot(v1),std::runtime_error);
        // wrong size output array through MultiVector interface
        Array<Scalar> dots(2);
#ifdef TEUCHOS_DEBUG
        TEST_THROW(v1.dot(v2,dots()),std::runtime_error);
        TEST_THROW(v2.dot(v1,dots()),std::runtime_error);
#endif
#endif
      }
    }
  }
#endif // if 0 // not compiling in Epetra only mode

  ////
  TEUCHOS_UNIT_TEST_TEMPLATE_6_DECL( MultiVector, OrthoDot, MV, V, Scalar, LocalOrdinal, GlobalOrdinal , Node )
  {
#ifdef HAVE_XPETRA_TPETRA
    typedef typename ScalarTraits<Scalar>::magnitudeType Mag;

    const global_size_t INVALID = OrdinalTraits<global_size_t>::invalid();
    //TODO FAILED: const Scalar S0 = ScalarTraits<Scalar>::zero();
    const Mag M0 = ScalarTraits<Mag>::zero();

    RCP<const Comm<int> > comm = getDefaultComm();
    const int numImages = comm->getSize();

    const size_t numLocal = 2;
    const size_t numVectors = 3;
    RCP<const Xpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > map = createContigMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(INVALID,numLocal,comm);
    const bool zeroOut = true;
    MV mvec1(map,numVectors,zeroOut),
       mvec2(map,numVectors,zeroOut);
    Array<Scalar> dots1(numVectors), dots2(numVectors), zeros(numVectors);
    Array<Mag>    norms1(numVectors), norms2(numVectors), ans(numVectors);
    std::fill(zeros.begin(),zeros.end(),ScalarTraits<Scalar>::zero());
    // these should be numerically orthogonal even in finite arithmetic, because both are zero. 1-norms are zero.
    mvec1.dot(mvec2,dots1());
    mvec2.dot(mvec1,dots2());
    TEST_COMPARE_FLOATING_ARRAYS(dots2,zeros,M0);
    TEST_COMPARE_FLOATING_ARRAYS(dots1,zeros,M0);
    //TODO FAILED: TEST_EQUALITY_CONST( mvec1.getVector(0)->dot(*mvec2.getVector(0)), S0);
    mvec1.norm1(norms1());
    mvec2.norm1(norms2());
    std::fill(ans.begin(), ans.end(), M0);
    TEST_COMPARE_FLOATING_ARRAYS(norms1,ans,M0);
    TEST_COMPARE_FLOATING_ARRAYS(norms1,ans,M0);
    // replace local entries s.t.
    // mvec1 = [1 1]  and  mvec2 = [0 0]
    //         [0 0]               [1 1]
    // still numerically orthogonal even in finite arithmetic. norms are numImages.
    for (size_t j=0; j < numVectors; ++j) {
      mvec1.replaceLocalValue(0,j,ScalarTraits<Scalar>::one());
      mvec2.replaceGlobalValue(map->getGlobalElement(1),j,ScalarTraits<Scalar>::one());
    }
    mvec1.dot(mvec2,dots1());
    mvec2.dot(mvec1,dots2());
    TEST_COMPARE_FLOATING_ARRAYS(dots2,zeros,M0);
    TEST_COMPARE_FLOATING_ARRAYS(dots1,zeros,M0);
    //TODO FAILED: TEST_EQUALITY_CONST( mvec1.getVector(0)->dot(*mvec2.getVector(0)), S0);
    mvec1.norm1(norms1());
    mvec2.norm1(norms2());
    std::fill(ans.begin(), ans.end(), as<Mag>(numImages));
    TEST_COMPARE_FLOATING_ARRAYS(norms1,ans,M0);
    TEST_COMPARE_FLOATING_ARRAYS(norms2,ans,M0);
    // sum into local entries s.t.
    // mvec1 = [1 1]  and  mvec2 = [-1 -1]
    //         [1 1]               [ 1  1]
    // still numerically orthogonal even in finite arithmetic. norms are 2*numImages.
    for (size_t j=0; j < numVectors; ++j) {
      mvec1.sumIntoLocalValue(1,j,ScalarTraits<Scalar>::one());
      mvec2.sumIntoGlobalValue(map->getGlobalElement(0),j,-ScalarTraits<Scalar>::one());
    }
    mvec1.dot(mvec2,dots1());
    mvec2.dot(mvec1,dots2());
    TEST_COMPARE_FLOATING_ARRAYS(dots2,zeros,M0);
    TEST_COMPARE_FLOATING_ARRAYS(dots1,zeros,M0);
    //TODO FAILED: TEST_EQUALITY_CONST( mvec1.getVector(0)->dot(*mvec2.getVector(0)), S0);
    mvec1.norm1(norms1());
    mvec2.norm1(norms2());
    std::fill(ans.begin(), ans.end(), as<Mag>(2*numImages));
    TEST_COMPARE_FLOATING_ARRAYS(norms1,ans,M0);
    TEST_COMPARE_FLOATING_ARRAYS(norms2,ans,M0);
#endif
  }

  ////
  TEUCHOS_UNIT_TEST_TEMPLATE_6_DECL( MultiVector, CopyView, MV, V, Scalar, LocalOrdinal, GlobalOrdinal , Node )
  {
#ifdef HAVE_XPETRA_TPETRA
    typedef typename ScalarTraits<Scalar>::magnitudeType Mag;

    const global_size_t INVALID = OrdinalTraits<global_size_t>::invalid();
    const Scalar S0 = ScalarTraits<Scalar>::zero();
    const Mag M0 = ScalarTraits<Mag>::zero();
    const Mag tol = errorTolSlack * ScalarTraits<Mag>::eps();
    RCP<const Comm<int> > comm = getDefaultComm();
    // create a Map
    const size_t numLocal = 7;
    const size_t numVectors = 13;
    RCP<const Xpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > map = createContigMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(INVALID,numLocal,comm);
    MV A(map,numVectors,false);
    {
      A.randomize();
      TEUCHOS_TEST_FOR_EXCEPT(numVectors != 13);
      Range1D inds1(8,12);
      // get a subview and a subcopy of certain vectors of A
      // check that the norms are the same
      // change the view, delete it, verify that the copy doesn't change but that A does
      A.randomize();
      Array<Mag> A_bef(numVectors),
                 A_aft (numVectors),
                 Av_bef(inds1.size()),
                 Av_aft (inds1.size()),
                 Ac_bef(inds1.size()),
                 Ac_aft (inds1.size());
      A.norm2(A_bef());
      // get view and its norms
#ifdef XPETRA_NOT_IMPLEMENTED
      RCP<MV> Av = A.subViewNonConst(inds1);
      Av->norm2(Av_bef());
      // get copy and its norms
      RCP<MV> Ac = A.subCopy(inds1);
      Ac->norm2(Ac_bef());
      // set view to zero
      Av->putScalar(ScalarTraits<Scalar>::zero());
      // get norms of view
      Av->norm2(Av_aft());
      // free the view, copying data back to A
      Av = Teuchos::null;
      // get norms of A and copy
      Ac->norm2(Ac_aft());
      A.norm2(A_aft());
      // norms of copy and view before should match norms of A
      for (size_t i=0; i < as<size_t>(inds1.size()); ++i) {
        TEST_FLOATING_EQUALITY( A_bef[inds1.lbound()+i], Ac_bef[i], tol );
      }
      TEST_COMPARE_FLOATING_ARRAYS(Ac_bef,Av_bef,tol);
      // norms of copy (before and after) should match
      TEST_COMPARE_FLOATING_ARRAYS(Ac_bef,Ac_aft,tol);
      // norms of view after should be zero, as should corresponding A norms
      for (size_t i=0; i < as<size_t>(inds1.size()); ++i) {
        TEST_EQUALITY_CONST( Av_aft[i], M0 );
        TEST_EQUALITY_CONST( A_aft[inds1.lbound()+i], M0 );
      }
#endif
    }
    {
      A.randomize();
      TEUCHOS_TEST_FOR_EXCEPT(numVectors != 13);
      Tuple<size_t,5> inds = tuple<size_t>(0,5,6,7,12);
      // get a subview and a subcopy of certain vectors of A
      // check that the norms are the same
      // change the view, delete it, verify that the copy doesn't change but that A does
      Array<Mag> A_bef(numVectors),
                 A_aft (numVectors),
                 Av_bef(inds.size()),
                 Av_aft (inds.size()),
                 Ac_bef(inds.size()),
                 Ac_aft (inds.size());
      A.norm2(A_bef());
#ifdef XPETRA_NOT_IMPLEMENTED
      // get view and its norms
      RCP<MV> Av = A.subViewNonConst(inds);
      Av->norm2(Av_bef());
      // get copy and its norms
      RCP<MV> Ac = A.subCopy(inds);
      Ac->norm2(Ac_bef());
      // set view to zero
      Av->putScalar(ScalarTraits<Scalar>::zero());
      // get norms of view
      Av->norm2(Av_aft());
      // free the view, copying data back to A
      Av = Teuchos::null;
      // get norms of A and copy
      Ac->norm2(Ac_aft());
#endif
      A.norm2(A_aft());
      // norms of copy and view before should match norms of A
      for (size_t i=0; i < as<size_t>(inds.size()); ++i) {
        //TODO FAILED: TEST_FLOATING_EQUALITY( A_bef[inds[i]], Ac_bef[i], tol );
      }
      TEST_COMPARE_FLOATING_ARRAYS(Ac_bef,Av_bef,tol);
      // norms of copy (before and after) should match
      TEST_COMPARE_FLOATING_ARRAYS(Ac_bef,Ac_aft,tol);
      // norms of view after should be zero, as should corresponding A norms
      for (size_t i=0; i < as<size_t>(inds.size()); ++i) {
        //TODO FAILED: TEST_EQUALITY_CONST( Av_aft[i], M0 );
        //TODO FAILED: TEST_EQUALITY_CONST( A_aft[inds[i]], M0 );
      }
    }
    {
      A.randomize();
      Array<Mag> Anorms(numVectors);
      A.norm2(Anorms());
      TEUCHOS_TEST_FOR_EXCEPT(numVectors != 13);
      for (size_t vc=0; vc < 2; ++vc) {
        // vc == 0 -> view
        // vc == 1 -> copy
#ifdef XPETRA_NOT_IMPLEMENTED
        for (size_t t=0; t < 4; ++t) {
          //  t |   outer   |   inner
          // ---|-----------|-----------
          //  0 | ArrayView | ArrayView
          //  1 |  Range1D  | ArrayView
          //  2 | ArrayView |  Range1D
          //  3 |  Range1D  |  Range1D
          //
          // outer grabs 5-9
          // inner grabs 1-3 of those, corresponding to 6-8
          RCP<const MV> sub1, sub2;
          if ((t & 1) == 0) {
            Tuple<size_t,5> inds = tuple<size_t>(5,6,7,8,9);
            if (vc == 0) sub1 = A.subView(inds);
            else         sub1 = A.subCopy(inds);
          }
          else {
            Range1D inds(5,9);
            if (vc == 0) sub1 = A.subView(inds);
            else         sub1 = A.subCopy(inds);
          }
          TEST_EQUALITY_CONST(sub1->getNumVectors(), 5);
          if ((t & 2) == 0) {
            Tuple<size_t,3> inds = tuple<size_t>(1,2,3);
            if (vc == 0) sub2 = sub1->subView(inds);
            else         sub2 = sub1->subCopy(inds);
          }
          else {
            Range1D inds(1,3);
            if (vc == 0) sub2 = sub1->subView(inds);
            else         sub2 = sub1->subCopy(inds);
          }
          TEST_EQUALITY_CONST(sub2->getNumVectors(), 3);
          Array<Mag> subnorms(3);
          sub2->norm2(subnorms());
          TEST_COMPARE_FLOATING_ARRAYS(Anorms(6,3),subnorms(),tol);
        }
#endif
      }
    }
    {
      A.randomize();
      {
        // check that 1dView and 1dCopy have the same values
        ArrayRCP<const Scalar> view;
        Array<Scalar> copy(numLocal*numVectors);
        view = A.get1dView();
        A.get1dCopy(copy(),numLocal);
        TEST_COMPARE_FLOATING_ARRAYS(view,copy,M0);
      }
      {
        // check that 1dView and 1dCopy have the same values
        ArrayRCP<Scalar> view;
        Array<Scalar> copy(numLocal*numVectors);
        view = A.get1dViewNonConst();
        A.get1dCopy(copy(),numLocal);
        TEST_COMPARE_FLOATING_ARRAYS(view,copy,M0);
        // clear view, ensure that A is zero
        std::fill(view.begin(), view.end(), S0);
        view = Teuchos::null;
        Array<Mag> norms(numVectors), zeros(numVectors,M0);
        A.norm2(norms());
        TEST_COMPARE_FLOATING_ARRAYS(norms,zeros,M0);
      }
      A.randomize();
      {
        // check that 1dView and 1dCopy have the same values
        ArrayRCP<ArrayRCP<const Scalar> > views;
        Array<Scalar> copyspace(numLocal*numVectors);
        Array<ArrayView<Scalar> > copies(numVectors);
        for (size_t j=0; j < numVectors; ++j) {
          copies[j] = copyspace(numLocal*j,numLocal);
        }
        views = A.get2dView();
        A.get2dCopy(copies());
        for (size_t j=0; j < numVectors; ++j) {
          TEST_COMPARE_FLOATING_ARRAYS(views[j],copies[j],M0);
        }
      }
      {
        // check that 1dView and 1dCopy have the same values
        Array<Scalar> copyspace(numLocal*numVectors);
        Array<ArrayView<Scalar> > copies(numVectors);
        for (size_t j=0; j < numVectors; ++j) {
          copies[j] = copyspace(numLocal*j,numLocal);
        }
        ArrayRCP<ArrayRCP<Scalar> > views = A.get2dViewNonConst();
        A.get2dCopy(copies());
        for (size_t j=0; j < numVectors; ++j) {
          TEST_COMPARE_FLOATING_ARRAYS(views[j],copies[j],M0);
        }
        // clear view, ensure that A is zero
        for (size_t j=0; j < numVectors; ++j) {
          std::fill(views[j].begin(), views[j].end(), S0);
        }
        views = Teuchos::null;
        Array<Mag> norms(numVectors), zeros(numVectors,M0);
        A.norm2(norms());
        TEST_COMPARE_FLOATING_ARRAYS(norms,zeros,M0);
      }
    }
#endif
  }

  ////
  TEUCHOS_UNIT_TEST_TEMPLATE_6_DECL( MultiVector, OffsetView, MV, V, Scalar, LocalOrdinal, GlobalOrdinal , Node )
  {
#ifdef HAVE_XPETRA_TPETRA
    // typedef typename ScalarTraits<Scalar>::magnitudeType Mag;

    const global_size_t INVALID = OrdinalTraits<global_size_t>::invalid();
    // TODO const Scalar S0 = ScalarTraits<Scalar>::zero();
    // TODO const Mag M0 = ScalarTraits<Mag>::zero();
    // TODO const Mag tol = errorTolSlack * ScalarTraits<Mag>::eps();
    RCP<const Comm<int> > comm = getDefaultComm();
    // create a Map
    const size_t numLocal1 = 3;
    const size_t numLocal2 = 4;
    const size_t numLocal = numLocal1 + numLocal2;
    const size_t numVectors = 6;
    Array<size_t> even(tuple<size_t>(1,3,5));
    Array<size_t>  odd(tuple<size_t>(0,2,4));
    TEUCHOS_TEST_FOR_EXCEPTION( even.size() != odd.size(), std::logic_error, "Test setup assumption violated.");
    RCP<const Xpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > fullMap = createContigMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(INVALID,numLocal,comm);
    RCP<const Xpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > map1 = createContigMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(INVALID,numLocal1,comm);
    RCP<const Xpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > map2 = createContigMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(INVALID,numLocal2,comm);
    RCP<MV> A = rcp(new MV(fullMap,numVectors,false));
#ifdef XPETRA_NOT_IMPLEMENTED
    {
      // contig source multivector
      RCP<MV> A1 = A->offsetViewNonConst(map1, 0);
      RCP<MV> A2 = A->offsetViewNonConst(map2, numLocal1);
      TEST_EQUALITY( A1->getLocalLength(), numLocal1 );
      TEST_EQUALITY( A2->getLocalLength(), numLocal2 );
      TEST_EQUALITY( A1->getNumVectors(), numVectors );
      TEST_EQUALITY( A2->getNumVectors(), numVectors );
      Array<Mag>  A_befr(numVectors),
                 A1_befr(numVectors),
                 A2_befr(numVectors),
                  A_aft1(numVectors),
                 A1_aft1(numVectors),
                 A2_aft1(numVectors),
                  A_aft2(numVectors),
                 A1_aft2(numVectors),
                 A2_aft2(numVectors);
      // compute norms of A, A1 and A2
      A->randomize();
      A->norm2(A_befr());
      A1->norm2(A1_befr());
      A2->norm2(A2_befr());
      // set A1 = zeros, compute norms of A, A1 and A2
      A1->putScalar(S0);
      A->norm2(A_aft1());
      A1->norm2(A1_aft1());
      A2->norm2(A2_aft1());
      // set A2 = zeros, compute norms of A, A1 and A2
      A2->putScalar(S0);
      A->norm2(A_aft2());
      A1->norm2(A1_aft2());
      A2->norm2(A2_aft2());
      // change to A1 should not affect A2
      // change to A2 should not affect A1
      // change to A1 or A2 should change A
      // A should be zero after setting A1 to zero and A2 to zero
      for (size_t i=0; i<numVectors; ++i) {
        TEST_EQUALITY_CONST( A_aft1[i] < A_befr[i] + tol, true ); // shrunk as A1 = 0
        TEST_EQUALITY_CONST( A_aft2[i] < A_aft1[i] + tol, true ); // shurnk as A2 = 0
        TEST_EQUALITY_CONST( A_aft2[i] , M0 );                    // ... to zero
        TEST_EQUALITY_CONST( A1_aft1[i] , M0 );                   // was set to zero
        TEST_EQUALITY_CONST( A1_aft2[i] , M0 );                   // should not have been changed
        TEST_FLOATING_EQUALITY( A2_befr[i], A2_aft1[i], tol);     // should not have been changed
        TEST_EQUALITY_CONST( A2_aft2[i] , M0 );                   // was set to zero
      }
    }
#endif
#ifdef XPETRA_NOT_IMPLEMENTED
    {
      // non-contig source multivector
      RCP<MV> A1e = A->subViewNonConst(even)->offsetViewNonConst(map1, 0);
      RCP<MV> A2e = A->subViewNonConst(even)->offsetViewNonConst(map2, numLocal1);
      RCP<MV> A1o = A->subViewNonConst(odd)->offsetViewNonConst(map1, 0);
      RCP<MV> A2o = A->subViewNonConst(odd)->offsetViewNonConst(map2, numLocal1);
      TEST_EQUALITY( A1e->getLocalLength(), numLocal1 );
      TEST_EQUALITY( A1o->getLocalLength(), numLocal1 );
      TEST_EQUALITY( A2e->getLocalLength(), numLocal2 );
      TEST_EQUALITY( A2o->getLocalLength(), numLocal2 );
      const size_t numSubVecs = (size_t)even.size();
      TEST_EQUALITY( A1e->getNumVectors(), numSubVecs );
      TEST_EQUALITY( A2e->getNumVectors(), numSubVecs );
      TEST_EQUALITY( A1o->getNumVectors(), numSubVecs );
      TEST_EQUALITY( A2o->getNumVectors(), numSubVecs );
      A->randomize();
      Array<Mag> b1(numSubVecs), b2(numSubVecs), b3(numSubVecs), bw(numVectors); // before putScalar(): unchanged 1, 2, 3; whole
      Array<Mag> a1(numSubVecs), a2(numSubVecs), a3(numSubVecs), aw(numVectors); // after putScalar(): ...
      Array<Mag> changed(numSubVecs), zeros(numSubVecs,M0);
      for (int i=0; i<4; ++i) {
        ArrayView<RCP<MV> > allMVs; // (changed,three unchanged)
        switch (i) {
        case 0:
          allMVs = tuple<RCP<MV> >(A1e,A2e,A1o,A2o); break;
        case 1:
          allMVs = tuple<RCP<MV> >(A2e,A1o,A2o,A1e); break;
        case 2:
          allMVs = tuple<RCP<MV> >(A1o,A2o,A1e,A2e); break;
        case 3:
          allMVs = tuple<RCP<MV> >(A2o,A1e,A2e,A1o); break;
        }
        allMVs[1]->norm2(b1()); allMVs[2]->norm2(b2()); allMVs[3]->norm2(b3());
        A->norm2(bw());
        allMVs[0]->putScalar(S0);
        allMVs[0]->norm2(changed());
        allMVs[1]->norm2(a1()); allMVs[2]->norm2(a2()); allMVs[3]->norm2(a3());
        A->norm2(aw());
        TEST_COMPARE_FLOATING_ARRAYS(b1,a1,tol);
        TEST_COMPARE_FLOATING_ARRAYS(b2,a2,tol);
        TEST_COMPARE_FLOATING_ARRAYS(b3,a3,tol);
        TEST_COMPARE_ARRAYS(changed(), zeros());
        for (size_t i=0; i<numVectors; ++i) {
          TEST_EQUALITY_CONST( aw[i] < bw[i] + tol, true ); // shrunk
        }
      }
    }
#endif
#ifdef XPETRA_NOT_IMPLEMENTED
    {
      RCP<const MV> A1 = A->offsetView(map1, 0);
      RCP<const MV> A2 = A->offsetView(map2, numLocal1);
      TEST_EQUALITY( A1->getLocalLength(), numLocal1 );
      TEST_EQUALITY( A2->getLocalLength(), numLocal2 );
      TEST_EQUALITY( A1->getNumVectors(), numVectors );
      TEST_EQUALITY( A2->getNumVectors(), numVectors );
      Array<Mag>  A_bef(numVectors),
                 A1_bef(numVectors),
                 A2_bef(numVectors),
                  A_aft(numVectors),
                 A1_aft(numVectors),
                 A2_aft(numVectors);
      // compute norms of A, A1 and A2
      A->randomize();
      A->norm2(A_bef());
      A1->norm2(A1_bef());
      A2->norm2(A2_bef());
      A->putScalar(S0);
      A->norm2(A_aft());
      A1->norm2(A1_aft());
      A2->norm2(A2_aft());
      for (size_t i=0; i<numVectors; ++i) {
        TEST_EQUALITY_CONST( A_bef[i] < A1_bef[i] + A2_bef[i] + tol, true );
        TEST_EQUALITY_CONST( A_aft[i], S0 );
        TEST_EQUALITY_CONST( A1_aft[i], S0 );
        TEST_EQUALITY_CONST( A2_aft[i], S0 );
      }
    }
#endif
#endif
  }

  ////
  TEUCHOS_UNIT_TEST_TEMPLATE_6_DECL( MultiVector, ZeroScaleUpdate, MV, V, Scalar, LocalOrdinal, GlobalOrdinal, Node )
  {
#ifdef HAVE_XPETRA_TPETRA
    typedef typename ScalarTraits<Scalar>::magnitudeType Mag;

    const global_size_t INVALID = OrdinalTraits<global_size_t>::invalid();
    const Mag M0 = ScalarTraits<Mag>::zero();
    RCP<const Comm<int> > comm = getDefaultComm();
    // create a Map
    const size_t numLocal = 2;
    const size_t numVectors = 2;
    const size_t LDA = 2;
    RCP<const Xpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > map = createContigMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(INVALID,numLocal,comm);
    Array<Scalar> values(6);
    // values = {1, 1, 2, 2, 4, 4}
    // values(0,4) = {1, 1, 2, 2} = [1 2]
    //                            = [1 2]
    // values(2,6) = {2, 2, 4, 4} = [2 4]
    //                            = [2 4]
    // a multivector A constructed from the first
    // has values .5 of a multivector B constructed from the second
    // then 2*A - B = 0
    // we test both scale(), both update(), and norm()
    values[0] = as<Scalar>(1);
    values[1] = as<Scalar>(1);
    values[2] = as<Scalar>(2);
    values[3] = as<Scalar>(2);
    values[4] = as<Scalar>(4);
    values[5] = as<Scalar>(4);
    MV A(map,values(0,4),LDA,numVectors),
       B(map,values(2,4),LDA,numVectors);
    Array<Mag> norms(numVectors), zeros(numVectors);
    std::fill(zeros.begin(),zeros.end(),M0);
    //
    //      [.... ....]
    // A == [ones ones]
    //      [.... ....]
    //
    //      [.... ....]
    // B == [twos twos]
    //      [.... ....]
    //
    //   set A2 = A
    //   scale it by 2 in situ
    //   check that it equals B: subtraction in situ
    {
      MV A2(A);
      A2.scale(as<Scalar>(2));
      A2.update(as<Scalar>(-1),B,as<Scalar>(1));
      A2.norm2(norms);
      TEST_COMPARE_FLOATING_ARRAYS(norms,zeros,M0);
    }
    //   set A2 = A
    //   check that it equals B: scale,subtraction in situ
    {
      MV A2(A);
      A2.update(as<Scalar>(-1),B,as<Scalar>(2));
      A2.norm2(norms);
      //TODO:FAILED TEST_COMPARE_FLOATING_ARRAYS(norms,zeros,M0);
    }
    //   set C random
    //   set it to zero by combination with A,B
    {
      MV C(map,numVectors);
      C.randomize();
      C.update(as<Scalar>(-1),B,as<Scalar>(2),A,as<Scalar>(0));
      C.norm2(norms);
      //TODO:FAILED      TEST_COMPARE_FLOATING_ARRAYS(norms,zeros,M0);
    }
    //   set C random
    //   scale it ex-situ
    //   check that it equals B: subtraction in situ
    // TODO this is only available with Tpetra???
    /*{
      MV C(map,numVectors);
      C.scale(as<Scalar>(2),A);
      C.update(as<Scalar>(1),B,as<Scalar>(-1));
      C.norm2(norms);
      //TODO:FAILED  TEST_COMPARE_FLOATING_ARRAYS(norms,zeros,M0);
    }*/
#endif // HAVE_XPETRA_TPETRA
  }


  ////
#if 0 // TAW fix me
  TEUCHOS_UNIT_TEST_TEMPLATE_6_DECL( MultiVector, ScaleAndAssign, MV, V, Scalar, LocalOrdinal, GlobalOrdinal, Node )
  {
#ifdef HAVE_XPETRA_TPETRA
    using std::endl;
    typedef Teuchos::ScalarTraits<Scalar> STS;
    typedef typename STS::magnitudeType Mag;
    typedef Teuchos::ScalarTraits<Mag> STM;
    typedef Xpetra::Map<LocalOrdinal, GlobalOrdinal, Node> map_type;
    typedef Xpetra::Vector<Scalar, LocalOrdinal, GlobalOrdinal, Node> vec_type;

    if (STS::isOrdinal) {
      return;
    }

    STS::seedrandom (0); // consistent seed
    const global_size_t INVALID = Teuchos::OrdinalTraits<global_size_t>::invalid ();
    const Mag tol = errorTolSlack * STM::eps ();
    const Mag M0 = STM::zero ();

    RCP<const Comm<int> > comm = getDefaultComm ();

    // create a Map
    const size_t numLocal = 23;
    const size_t numVectors = 11;
    RCP<const map_type> map =
      createContigMapWithNode<LocalOrdinal,GlobalOrdinal,Node> (INVALID, numLocal, comm);

    // Use random multivector A
    // Set B = A * 2 manually.
    // Therefore, if C = 2*A, then C == B
    // If C = A and C *= 2, then C == B
    // This test operator= and all of our scale ops
    // We'll do Vector and MultiVector variations
    // Also, ensure that other vectors aren't changed
    MV A (map, numVectors, false);
    MV B (map, numVectors, false);
    A.randomize();
    Array<Mag> Anrms(numVectors);
    A.norm2(Anrms());
    // Set B = A * 2, using different techniques, depending on the value of j % 4.
    //
    // 0: getVector, B_j = A_j (Vector::operator=), B_j(i) *= 2
    // 1: getVector, B_j(i) = 2 * A_j(i)
    // 2: getVector, B_j->update (2, *A_j, 0)
    // 3. A_j = A.getData(j), B_j = B.getDataNonConst(j), B_j(i) = A_j(i) * 2
    TEUCHOS_TEST_FOR_EXCEPT(numVectors < 4);

    for (size_t j = 0; j < numVectors; ++j) {
      // assign j-th vector of B to 2 * j-th vector of A
      switch (j % 4) {
      case 0:
        {
          // B(:,j) := A(:,j), and B(i,j) *= 2 for all i.
          RCP<vec_type> bj = B.getVectorNonConst (j);
          RCP<const vec_type> aj = A.getVector (j);
          (*bj) = (*aj);
          ArrayRCP<Scalar> bjview = bj->getDataNonConst (0); // zero-th column of bj
          for (size_t i = 0; i < numLocal; ++i) {
            bjview[i] *= as<Scalar> (2);
          }
        }
        break;
      case 1:
        {
          // B(i,j) := 2 * A(i,j) for all i.
          RCP<vec_type> B_j = B.getVectorNonConst (j);
          RCP<const vec_type> A_j = A.getVector (j);
          // View of the zero-th column of A_j is a view of the j-th column of A.
          ArrayRCP<const Scalar> A_j_view = A_j->getData (0);
          // View of the zero-th column of B_j is a view of the j-th column of B.
          ArrayRCP<Scalar> B_j_view = B_j->getDataNonConst (0);
          for (size_t i = 0; i < numLocal; ++i) {
            B_j_view[i] = as<Scalar> (2) * A_j_view[i];
          }
        }
        break;
      case 2:
        {
          RCP<vec_type> B_j = B.getVectorNonConst (j);
          RCP<const vec_type> A_j = A.getVector (j);
          B_j->update (as<Scalar> (2), *A_j, STS::zero ());
        }
        break;
      case 3:
      default:
        {
          ArrayRCP<Scalar>       bjview = B.getDataNonConst(j);
          ArrayRCP<const Scalar> ajview = A.getData(j);
          for (size_t i=0; i < numLocal; ++i) {
            bjview[i] = as<Scalar>(2) * ajview[i];
          }
        }
        break;
      }
    }

    // Check that A wasn't modified
    out << "Check that A wasn't modified" << endl;
    {
      Teuchos::OSTab tab1 (out);
      Array<Mag> Anrms_aft(numVectors);
      A.norm2(Anrms_aft());
      TEST_COMPARE_FLOATING_ARRAYS(Anrms(),Anrms_aft(),tol);
    }
    // Check that C.Scale(2, A) results in C == B
    out << "Check that C.scale(2, A) results in C == B" << endl;
    {
      Teuchos::OSTab tab1 (out);
      MV C (map, numVectors, false);
      C.scale (as<Scalar> (2), A);
      C.update (-1.0, B, 1.0); // C := C - B
      Array<Mag> Cnorms(numVectors), zeros(numVectors,M0);
      C.norm2(Cnorms());
      TEST_COMPARE_FLOATING_ARRAYS(Cnorms(),zeros,tol);
    }
    out << "Check that A wasn't modified" << endl;
    {
      Teuchos::OSTab tab1 (out);
      Array<Mag> Anrms_aft (numVectors);
      A.norm2 (Anrms_aft ());
      TEST_COMPARE_FLOATING_ARRAYS( Anrms (), Anrms_aft (), tol);
    }
    // Check that C = A, C.scale(2) results in C == B
    out << "Check that C = A, C.scale(2) results in C == B" << endl;
    {
      Teuchos::OSTab tab1 (out);
      MV C (map, numVectors, false);
      C = A;
      C.scale (as<Scalar> (2));
      C.update (-1.0, B, 1.0);
      Array<Mag> Cnorms(numVectors), zeros(numVectors,M0);
      C.norm2(Cnorms());
      TEST_COMPARE_FLOATING_ARRAYS(Cnorms(),zeros,tol);
    }
    out << "Check that A wasn't modified" << endl;
    {
      Teuchos::OSTab tab1 (out);
      Array<Mag> Anrms_aft (numVectors);
      A.norm2 (Anrms_aft ());
      TEST_COMPARE_FLOATING_ARRAYS( Anrms (), Anrms_aft (), tol);
    }
    // Check that C = A, C_j.scale(2) for all j, results in C == B
    out << "Check that C = A, C_j.scale(2) for all j, results in C == B" << endl;
    {
      Teuchos::OSTab tab1 (out);
      MV C(map,numVectors,false);
      C = A;
      for (size_t j = 0; j < numVectors; ++j) {
        RCP<vec_type> C_j = C.getVectorNonConst (j);
        C_j->scale (as<Scalar> (2));
      }
      C.update (-1.0, B, 1.0);
      Array<Mag> Cnorms(numVectors), zeros(numVectors,M0);
      C.norm2(Cnorms());
      TEST_COMPARE_FLOATING_ARRAYS(Cnorms(),zeros,tol);
    }
    out << "Check that A wasn't modified" << endl;
    {
      Teuchos::OSTab tab1 (out);
      Array<Mag> Anrms_aft (numVectors);
      A.norm2 (Anrms_aft ());
      TEST_COMPARE_FLOATING_ARRAYS( Anrms (), Anrms_aft (), tol);
    }
    // Check that C = A, C.scale([2, 2, ..., 2]) results in C == B
    out << "Check that C = A, C.scale([2, 2, ..., 2]) results in C == B" << endl;
    {
      Teuchos::OSTab tab1 (out);
      MV C(map,numVectors,false);
      C = A;
      Array<Scalar> twos(numVectors,as<Scalar>(2));
      C.scale(twos());
      C.update(-1.0,B,1.0);
      Array<Mag> Cnorms(numVectors), zeros(numVectors,M0);
      C.norm2(Cnorms());
      TEST_COMPARE_FLOATING_ARRAYS(Cnorms(),zeros,tol);
    }
    out << "Check that A wasn't modified" << endl;
    {
      Teuchos::OSTab tab1 (out);
      Array<Mag> Anrms_aft (numVectors);
      A.norm2 (Anrms_aft ());
      TEST_COMPARE_FLOATING_ARRAYS( Anrms (), Anrms_aft (), tol);
    }
#endif // HAVE_XPETRA_TPETRA
  }
#endif // fix me!


  ////
  TEUCHOS_UNIT_TEST_TEMPLATE_6_DECL( Vector, ZeroScaleUpdate, MV, V, Scalar, LocalOrdinal, GlobalOrdinal, Node )
  {
#ifdef HAVE_XPETRA_TPETRA
    typedef typename ScalarTraits<Scalar>::magnitudeType Mag;
    const global_size_t INVALID = OrdinalTraits<global_size_t>::invalid();
    const Mag M0 = ScalarTraits<Mag>::zero();
    RCP<const Comm<int> > comm = getDefaultComm();
    // create a Map
    RCP<const Xpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > map = createContigMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(INVALID,2,comm);
    Array<Scalar> values(6);
    // values = {1, 1, 2, 2}
    // values(0,2) = {1, 1} = [1]
    //                      = [1]
    // values(2,2) = {2, 2} = [2]
    //                      = [2]
    // a vector A constructed from the first
    // has values .5 of a vector B constructed from the second
    // thus 2*A - B = 0
    // we test both scale(), both update(), and norm()
    values[0] = as<Scalar>(1);
    values[1] = as<Scalar>(1);
    values[2] = as<Scalar>(2);
    values[3] = as<Scalar>(2);
    V A(map,values(0,2)),
      B(map,values(2,2));
    Mag norm;
    Array<Mag> norms(1);
    //
    //      [....]
    // A == [ones]
    //      [....]
    //
    //      [....]
    // B == [twos]
    //      [....]
    //
    //   set A2 = A
    //   scale it by 2 in situ
    //   check that it equals B: subtraction in situ
    {
      V A2(A);
      A2.scale(as<Scalar>(2));
      A2.update(as<Scalar>(-1),B,as<Scalar>(1));
      norm = A2.norm2(); A2.norm2(norms());
      TEST_EQUALITY(norm,M0);
      TEST_EQUALITY(norm,norms[0]);
    }
    //   set A2 = A
    //   check that it equals B: scale,subtraction in situ
    {
      V A2(A);
      A2.update(as<Scalar>(-1),B,as<Scalar>(2));
      norm = A2.norm2(); A2.norm2(norms());
      //TODO FAILED: TEST_EQUALITY(norm,M0);
      //TODO FAILED: TEST_EQUALITY(norm,norms[0]);
    }
    //   set C random
    //   set it to zero by combination with A,B
    {
      V C(map);
      C.randomize();
      C.update(as<Scalar>(-1),B,as<Scalar>(2),A,as<Scalar>(0));
      norm = C.norm2(); C.norm2(norms());
      //TODO FAILED: TEST_EQUALITY(norm,M0);
      //TODO FAILED: TEST_EQUALITY(norm,norms[0]);
    }
    //   set C random
    //   scale it ex-situ
    //   check that it equals B: subtraction in situ
    {  // TODO only available with Tpetra??
      V C(map);
      C.randomize();
      C.scale(as<Scalar>(2),A);
      C.update(as<Scalar>(1),B,as<Scalar>(-1));
      norm = C.norm2(); C.norm2(norms());
      //TODO FAILED: TEST_EQUALITY(norm,M0);
      //TODO FAILED: TEST_EQUALITY(norm,norms[0]);
    }
#endif //HAVE_XPETRA_TPETRA
  }

  ////
  TEUCHOS_UNIT_TEST_TEMPLATE_6_DECL( MultiVector, CopyConst, MV, V, Scalar, LocalOrdinal, GlobalOrdinal , Node )
  {
#ifdef HAVE_XPETRA_TPETRA

    typedef typename ScalarTraits<Scalar>::magnitudeType Mag;
    const global_size_t INVALID = OrdinalTraits<global_size_t>::invalid();
    const Mag M0 = ScalarTraits<Mag>::zero();
    RCP<const Comm<int> > comm = getDefaultComm();
    // create a Map
    const size_t numLocal = 13;
    const size_t numVectors = 7;
    RCP<const Xpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > map = createContigMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(INVALID,numLocal,comm);
    {
      // create random MV
      MV mvorig(map,numVectors);
      mvorig.randomize();
      // create non-const subview, test copy constructor
      TEUCHOS_TEST_FOR_EXCEPT(numVectors != 7);
      Tuple<size_t,3> inds = tuple<size_t>(1,3,5);
#ifdef XPETRA_NOT_IMPLEMENTED
      RCP<MV> mvview = mvorig.subViewNonConst(inds);
#endif
      Array<Mag> norig(numVectors), nsub(inds.size()), ncopy(inds.size());
      mvorig.normInf(norig());
      for (size_t j=0; j < as<size_t>(inds.size()); ++j) {
        nsub[j] = norig[inds[j]];
      }
#ifdef XPETRA_NOT_IMPLEMENTED
      MV mvcopy(*mvview);
      mvcopy.normInf(ncopy());
      TEST_COMPARE_FLOATING_ARRAYS(ncopy,nsub,M0);
      // reset both the view and the copy of the view, ensure that they are independent
      Teuchos::Array<Mag> nsub_aft(inds.size()), ones(inds.size(),as<Mag>(1));
      Teuchos::Array<Mag> ncopy_aft(inds.size()), twos(inds.size(),as<Mag>(2));
      mvview->putScalar(as<Scalar>(1));
      mvcopy.putScalar(as<Scalar>(2));
      mvview->normInf(nsub_aft());
      mvcopy.normInf(ncopy_aft());
      TEST_COMPARE_FLOATING_ARRAYS(nsub_aft,ones,M0);
      TEST_COMPARE_FLOATING_ARRAYS(ncopy_aft,twos,M0);
#endif
    }
    {
      // create random MV
      MV morig(map,numVectors);
      morig.randomize();
      // test copy constructor with
      // copy it
      MV mcopy1(morig), mcopy2(morig);
      // verify that all three have identical values
      Array<Mag> norig(numVectors), ncopy1(numVectors), ncopy2(numVectors);
      morig.normInf(norig);
      mcopy1.normInf(ncopy1);
      mcopy2.normInf(ncopy2);
      TEST_COMPARE_FLOATING_ARRAYS(norig,ncopy1,M0);
      TEST_COMPARE_FLOATING_ARRAYS(norig,ncopy2,M0);
      // modify all three
      morig.putScalar(as<Scalar>(0));
      mcopy1.putScalar(as<Scalar>(1));
      mcopy2.putScalar(as<Scalar>(2));
      // compute norms, check
      Array<Mag> zeros(numVectors,as<Mag>(0)), ones(numVectors,as<Mag>(1)), twos(numVectors,as<Mag>(2));
      morig.normInf(norig);
      mcopy1.normInf(ncopy1);
      mcopy2.normInf(ncopy2);
      //TODO:FAILED TEST_COMPARE_FLOATING_ARRAYS(norig,zeros,M0);
      //            TEST_COMPARE_FLOATING_ARRAYS(ncopy1,ones,M0);
      //            TEST_COMPARE_FLOATING_ARRAYS(ncopy2,twos,M0);
    }
#endif // HAVE_XPETRA_TPETRA
  }

  ////
  TEUCHOS_UNIT_TEST_TEMPLATE_6_DECL( Vector, CopyConst, MV, V, Scalar, LocalOrdinal, GlobalOrdinal , Node )
  {
#ifdef HAVE_XPETRA_TPETRA
    typedef typename ScalarTraits<Scalar>::magnitudeType Magnitude;
    const global_size_t INVALID = OrdinalTraits<global_size_t>::invalid();
    RCP<const Comm<int> > comm = getDefaultComm();
    // create a Map
    RCP<const Xpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > map = createContigMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(INVALID,2,comm);
    // create random MV
    V morig(map);
    morig.randomize();
    // copy it
    V mcopy1(morig), mcopy2(morig);
    // verify that all three have identical values
    Magnitude norig, ncopy1, ncopy2;
    norig = morig.normInf();
    ncopy1 = mcopy1.normInf();
    ncopy2 = mcopy2.normInf();
    TEST_EQUALITY(norig,ncopy1);
    TEST_EQUALITY(norig,ncopy2);
    TEST_EQUALITY(ncopy1,ncopy2);
    // modify all three
    morig.putScalar(as<Scalar>(0));
    mcopy1.putScalar(as<Scalar>(1));
    mcopy2.putScalar(as<Scalar>(2));
    // compute norms
    norig = morig.normInf();
    ncopy1 = mcopy1.normInf();
    ncopy2 = mcopy2.normInf();
    // check them
    //TODO FAILED: TEST_EQUALITY(norig, as<Scalar>(0));
    //TODO FAILED: TEST_EQUALITY(ncopy1,as<Scalar>(1));
    //TODO FAILED: TEST_EQUALITY(ncopy2,as<Scalar>(2));
#endif
  }

  ////
  TEUCHOS_UNIT_TEST_TEMPLATE_6_DECL( Vector, Indexing, MV, V, Scalar, LocalOrdinal, GlobalOrdinal , Node )
  {
#ifdef HAVE_XPETRA_TPETRA
    typedef ScalarTraits<Scalar>              SCT;
    typedef typename SCT::magnitudeType Magnitude;
    const global_size_t INVALID = OrdinalTraits<global_size_t>::invalid();
    RCP<const Comm<int> > comm = getDefaultComm();
    // create a Map
    RCP<const Xpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > map = createContigMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(INVALID,100,comm);
    // create two random Vector objects
    V v1(map), v2(map);
    v1.randomize();
    v2.randomize();
    // set values in both to 1.0
    // for the first, do via putScalar()
    // the the second, do manually, looping over all elements
    // verify that both have identical values
    v1.putScalar(SCT::one());
    {
      ArrayRCP<Scalar> view = v2.get1dViewNonConst();
      for (typename ArrayRCP<Scalar>::iterator v = view.begin(); v != view.end(); ++v) {
        *v = SCT::one();
      }
      view = Teuchos::null;
    }
    Magnitude err;
    // subtract v2 from v1; this should result in v1 = zeros
    v1.update(-1.0,v2,1.0);
    err = v1.norm2();
    TEST_EQUALITY_CONST(err,SCT::zero());
#endif
  }

  ////
  TEUCHOS_UNIT_TEST_TEMPLATE_6_DECL( MultiVector, SingleVecNormalize, MV, V, Scalar, LocalOrdinal, GlobalOrdinal, Node )
  {
#ifdef HAVE_XPETRA_TPETRA
    // this documents a usage case in Anasazi::SVQBOrthoManager, which was failing
    // error turned out to be a neglected return in both implementations of update(),
    // after passing the buck to scale() in the case of alpha==0 or beta==0 or gamma=0
    if (ScalarTraits<Scalar>::isOrdinal) return;

    typedef typename ScalarTraits<Scalar>::magnitudeType Magnitude;
    const global_size_t INVALID = OrdinalTraits<global_size_t>::invalid();
    const Magnitude M1  = ScalarTraits<Magnitude>::one();
    //TODO unused: const Magnitude M0 = ScalarTraits<Magnitude>::zero();
    RCP<const Comm<int> > comm = getDefaultComm();
    // create a Map
    const size_t numLocal = 10;
    const size_t numVectors = 6;
    RCP<const Xpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > map = createContigMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(INVALID,numLocal,comm);
    // create random MV
    MV mv(map,numVectors);
    mv.randomize();
    // compute the norms
    Array<Magnitude> norms(numVectors);
    mv.norm2(norms());
#ifdef XPETRA_NOT_IMPLEMENTED
    for (size_t j=0; j<numVectors; ++j) {
      // get a view of column j, normalize it using update()
      RCP<MV> mvj = mv.subViewNonConst(tuple<size_t>(j));
      switch (j) {
      case 0:
        mvj->scale( M1/norms[j] );
        break;
      case 1:
        mvj->update( M1/norms[j], *mvj, M0 );
        break;
      case 2:
        mvj->update( M0         , *mvj, M1/norms[j] );
        break;
      case 3:
        mvj->update( M0         , *mvj, M1/norms[j], *mvj, M0 );
        break;
      case 4:
        mvj->update( M1/norms[j], *mvj, M0         , *mvj, M0 );
        break;
      case 5:
        mvj->update( M0         , *mvj, M0         , *mvj, M1/norms[j] );
        break;
      }
    }
#endif
    mv.norm2(norms()); // should be all one now
    Array<Magnitude> ones(numVectors,M1);
    //TODO FAILED: TEST_COMPARE_FLOATING_ARRAYS(norms,ones,ScalarTraits<Magnitude>::eps()*as<Magnitude>(10.));
#endif
  }

  ////
  TEUCHOS_UNIT_TEST_TEMPLATE_6_DECL( MultiVector, CountDot, MV, V, Scalar, LocalOrdinal, GlobalOrdinal , Node )
  {
#ifdef HAVE_XPETRA_TPETRA

    typedef typename ScalarTraits<Scalar>::magnitudeType Magnitude;
    const global_size_t INVALID = OrdinalTraits<global_size_t>::invalid();
    const Magnitude M0 = ScalarTraits<Magnitude>::zero();
    RCP<const Comm<int> > comm = getDefaultComm();
    const int numImages = comm->getSize();
    // create a Map
    const size_t numLocal = 2;
    const size_t numVectors = 3;
    RCP<const Xpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > map = createContigMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(INVALID,numLocal,comm);
    Array<Scalar> values(6);
    // values = {0, 0, 1, 1, 2, 2} = [0 1 2]
    //                               [0 1 2]
    // dot(values,values) = [0*0+0*0 1+1*1 + 2*2+2*2] = [0 2 8]
    // summed over all procs, this is [0 2*nprocs 8*nprocs]
    values[0] = as<Scalar>(0);
    values[1] = as<Scalar>(0);
    values[2] = as<Scalar>(1);
    values[3] = as<Scalar>(1);
    values[4] = as<Scalar>(2);
    values[5] = as<Scalar>(2);
    MV mvec1(map,values(),2,numVectors),
       mvec2(map,values(),2,numVectors);
    Array<Scalar> dots1(numVectors), dots2(numVectors), answer(numVectors);
    answer[0] = as<Scalar>(0);
    answer[1] = as<Scalar>(2*numImages);
    answer[2] = as<Scalar>(8*numImages);
    // do the dots
    mvec1.dot(mvec2,dots1());
    mvec2.dot(mvec1,dots2());
    // check the answers
    TEST_COMPARE_FLOATING_ARRAYS(dots1,dots2,M0);
    TEST_COMPARE_FLOATING_ARRAYS(dots1,answer,M0);
#endif
  }

  ////
  TEUCHOS_UNIT_TEST_TEMPLATE_6_DECL( MultiVector, CountDotNonTrivLDA, MV, V, Scalar, LocalOrdinal, GlobalOrdinal, Node )
  {
#ifdef HAVE_XPETRA_TPETRA
    // same as CountDot, but the A,LDA has a non-trivial LDA (i.e., LDA != myLen)

    typedef typename ScalarTraits<Scalar>::magnitudeType Magnitude;
    const global_size_t INVALID = OrdinalTraits<global_size_t>::invalid();
    const Magnitude M0 = ScalarTraits<Magnitude>::zero();
    RCP<const Comm<int> > comm = getDefaultComm();
    const int numImages = comm->getSize();
    // create a Map
    const size_t numLocal = 2;
    const size_t numVectors = 3;
    const size_t LDA = 3;
    RCP<const Xpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > map = createContigMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(INVALID,numLocal,comm);
    Array<Scalar> values(9);
    // A = {0, 0, -1, 1, 1, -1, 2, 2, -1} = [0   1  2]
    //                                      [0   1  2]
    //                                      [-1 -1 -1]
    // processed as a 2 x 3 with LDA==3, the result it
    //            values =       [0 1 2]
    //                           [0 1 2]
    // dot(values,values) = [0*0+0*0 1+1*1 + 2*2+2*2] = [0 2 8]
    // summed over all procs, this is [0 2*nprocs 8*nprocs]
    values[0] = as<Scalar>(0);
    values[1] = as<Scalar>(0);
    values[2] = as<Scalar>(-1);
    values[3] = as<Scalar>(1);
    values[4] = as<Scalar>(1);
    values[5] = as<Scalar>(-1);
    values[6] = as<Scalar>(2);
    values[7] = as<Scalar>(2);
    values[8] = as<Scalar>(-1);
    MV mvec1(map,values(),LDA,numVectors),
       mvec2(map,values(),LDA,numVectors);
    Array<Scalar> dots1(numVectors), dots2(numVectors), answer(numVectors);
    answer[0] = as<Scalar>(0);
    answer[1] = as<Scalar>(2*numImages);
    answer[2] = as<Scalar>(8*numImages);
    // do the dots
    mvec1.dot(mvec2,dots1());
    mvec2.dot(mvec1,dots2());
    // check the answers
    TEST_COMPARE_FLOATING_ARRAYS(dots1,dots2,M0);
    TEST_COMPARE_FLOATING_ARRAYS(dots1,answer,M0);
#endif // HAVE_XPETRA_TPETRA
  }

  ////
  TEUCHOS_UNIT_TEST_TEMPLATE_6_DECL( MultiVector, CountNorm1, MV, V, Scalar, LocalOrdinal, GlobalOrdinal, Node )
  {
#ifdef HAVE_XPETRA_TPETRA

    typedef typename ScalarTraits<Scalar>::magnitudeType MT;
    const global_size_t INVALID = OrdinalTraits<global_size_t>::invalid();
    const MT M0 = ScalarTraits<MT>::zero();
    RCP<const Comm<int> > comm = getDefaultComm();
    const int numImages = comm->getSize();
    // create a Map
    const size_t numLocal = 2;
    const size_t numVectors = 3;
    RCP<const Xpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > map = createContigMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(INVALID,numLocal,comm);
    Array<Scalar> values(6);
    // values = {0, 0, 1, 1, 2, 2} = [0 1 2]
    //                               [0 1 2]
    // norm1(values) = [0 2 4]
    // over all procs, this is [0 2*nprocs 4*nprocs]
    // mean is [0 1 2]
    values[0] = as<Scalar>(0);
    values[1] = as<Scalar>(0);
    values[2] = as<Scalar>(1);
    values[3] = as<Scalar>(1);
    values[4] = as<Scalar>(2);
    values[5] = as<Scalar>(2);
    MV mvec(map,values(),2,numVectors);
    // compute, check norms
    {
      Array<MT> norms(numVectors), answer(numVectors);
      answer[0] = as<MT>(0);
      answer[1] = as<MT>(2*numImages);
      answer[2] = as<MT>(4*numImages);
      mvec.norm1(norms());
      TEST_COMPARE_FLOATING_ARRAYS(norms,answer,M0);
    }
    {
      // compute, check means
      Array<Scalar> means(numVectors), answer(numVectors);
      mvec.meanValue(means());
      answer[0] = as<Scalar>(0);
      answer[1] = as<Scalar>(1);
      answer[2] = as<Scalar>(2);
      TEST_COMPARE_FLOATING_ARRAYS(means,answer,M0);
      for (size_t j=0; j < numVectors; ++j) {
        //TODO FAILED: TEST_EQUALITY( mvec.getVector(j)->meanValue(), answer[j] );
      }
    }
#endif
  }

  ////
  TEUCHOS_UNIT_TEST_TEMPLATE_6_DECL( MultiVector, CountNormInf, MV, V, Scalar, LocalOrdinal, GlobalOrdinal, Node )
  {
#ifdef HAVE_XPETRA_TPETRA

    typedef typename ScalarTraits<Scalar>::magnitudeType MT;
    const global_size_t INVALID = OrdinalTraits<global_size_t>::invalid();
    const MT M0 = ScalarTraits<MT>::zero();
    RCP<const Comm<int> > comm = getDefaultComm();
    // create a Map
    const size_t numLocal = 2;
    const size_t numVectors = 3;
    RCP<const Xpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > map = createContigMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(INVALID,numLocal,comm);
    Array<Scalar> values(6);
    // values = {0, 0, 1, 1, 2, 2} = [0 1 2]
    //                               [0 1 2]
    // normInf(values) = [0 1 2]
    // over all procs, this is [0 1 2]
    values[0] = as<Scalar>(0);
    values[1] = as<Scalar>(0);
    values[2] = as<Scalar>(1);
    values[3] = as<Scalar>(1);
    values[4] = as<Scalar>(2);
    values[5] = as<Scalar>(2);
    MV mvec(map,values(),2,numVectors);
    Array<MT> norms(numVectors), answer(numVectors);
    answer[0] = as<MT>(0);
    answer[1] = as<MT>(1);
    answer[2] = as<MT>(2);
    // do the dots
    mvec.normInf(norms());
    // check the answers
    TEST_COMPARE_FLOATING_ARRAYS(norms,answer,M0);
#endif
  }

  ////
  TEUCHOS_UNIT_TEST_TEMPLATE_6_DECL( MultiVector, Norm2, MV, V, Scalar, LocalOrdinal, GlobalOrdinal, Node )
  {
#ifdef HAVE_XPETRA_TPETRA
    typedef typename ScalarTraits<Scalar>::magnitudeType MT;
    const global_size_t INVALID = OrdinalTraits<global_size_t>::invalid();
    const MT M0 = ScalarTraits<MT>::zero();
    RCP<const Comm<int> > comm = getDefaultComm();
    // create a Map
    const size_t numLocal = 13;
    const size_t numVectors = 7;
    RCP<const Xpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > map = createContigMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(INVALID,numLocal,comm);
    MV mvec(map,numVectors);
    // randomize the multivector
    mvec.randomize();
    // take norms; they should not be zero
    Array<MT> normsRand(numVectors), normsZero(numVectors);
    mvec.norm2(normsRand());
    // zero the vector
    mvec.putScalar(ScalarTraits<Scalar>::zero());
    // take norms; they should be zero
    mvec.norm2(normsZero());
    // check the answers
    bool local_success = true;
    for (size_t i=0; i<numVectors; ++i) {
      TEST_ARRAY_ELE_INEQUALITY(normsRand,i,M0);
      TEST_ARRAY_ELE_EQUALITY(normsZero,i,M0);
    }
    success &= local_success;
#endif
  }

  //// TODO this code should be generalized
  TEUCHOS_UNIT_TEST_TEMPLATE_6_DECL( MultiVector, BadCombinations, MV, V, Scalar, LocalOrdinal, GlobalOrdinal, Node )
  {
#ifdef HAVE_XPETRA_TPETRA
    typedef typename ScalarTraits<Scalar>::magnitudeType Mag;
    const global_size_t INVALID = OrdinalTraits<global_size_t>::invalid();
    RCP<const Comm<int> > comm = getDefaultComm();
    const int myImageID = comm->getRank();
    // create a Map
    const Scalar rnd = ScalarTraits<Scalar>::random();
    // two maps: one has two entries per process, the other disagrees on process 0
    RCP<const Xpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > map1 = createContigMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(INVALID,2,comm),
      map2 = createContigMapWithNode<LocalOrdinal,GlobalOrdinal,Node>(INVALID,myImageID == 0 ? 1 : 2,comm);
    // multivectors from different maps are incompatible for all ops
    // multivectors from the same map are compatible only if they have the same number of
    //    columns
    MV m1n1(map1,1), m1n2(map1,2), m2n2(map2,2), m1n2_2(map1,2);
    Array<Scalar> dots(1);
    Array<Mag>    norms(1);
    // TODO: what exceptions are on the other processors thrown?
    if(myImageID==0) {
      // FINISH: test multiply (both), reciprocalMultiply
      TEST_THROW(m1n2.dot(m1n1,dots()), std::runtime_error); // dot
      TEST_THROW(m1n2.dot(m2n2,dots()), std::runtime_error);
      TEST_THROW(m1n2.abs(m1n1), std::runtime_error);       // abs
      TEST_THROW(m1n2.abs(m2n2), std::runtime_error);
      TEST_THROW(m1n2.abs(m1n1), std::runtime_error);       // abs
      TEST_THROW(m1n2.abs(m2n2), std::runtime_error);
      //TEST_THROW(m1n2.scale(rnd,m1n1), std::runtime_error); // abs  // TODO only available with Tpetra??
      //TEST_THROW(m1n2.scale(rnd,m2n2), std::runtime_error);
      TEST_THROW(m1n2.update(rnd,m1n1,rnd), std::runtime_error); // update(alpha,A,beta)
      TEST_THROW(m1n2.update(rnd,m2n2,rnd), std::runtime_error);
      TEST_THROW(m1n2.update(rnd,m2n2  ,rnd,m1n2_2,rnd), std::runtime_error); // update(alpha,A,beta,B,gamma) // A incompat
      TEST_THROW(m1n2.update(rnd,m2n2  ,rnd,m1n2_2,rnd), std::runtime_error); // incompt is length            // A incompat
      TEST_THROW(m1n2.update(rnd,m1n2_2,rnd,m2n2  ,rnd), std::runtime_error);                                 // B incompat
      TEST_THROW(m1n2.update(rnd,m1n2_2,rnd,m2n2  ,rnd), std::runtime_error);                                 // B incompat
      TEST_THROW(m1n2.update(rnd,m2n2  ,rnd,m2n2  ,rnd), std::runtime_error);                                 // A,B incompat
      TEST_THROW(m1n2.update(rnd,m2n2  ,rnd,m2n2  ,rnd), std::runtime_error);                                 // A,B incompat
      TEST_THROW(m1n2.update(rnd,m1n1  ,rnd,m1n2_2,rnd), std::runtime_error); // incompt is numVecs           // A incompat
      TEST_THROW(m1n2.update(rnd,m1n1  ,rnd,m1n2_2,rnd), std::runtime_error);                                 // A incompat
      TEST_THROW(m1n2.update(rnd,m1n2_2,rnd,m1n1  ,rnd), std::runtime_error);                                 // B incompat
      TEST_THROW(m1n2.update(rnd,m1n2_2,rnd,m1n1  ,rnd), std::runtime_error);                                 // B incompat
      TEST_THROW(m1n2.update(rnd,m1n1  ,rnd,m1n1  ,rnd), std::runtime_error);                                 // A,B incompat
      TEST_THROW(m1n2.update(rnd,m1n1  ,rnd,m1n1  ,rnd), std::runtime_error);                                 // A,B incompat
      TEST_THROW(m1n2.reciprocal(m1n1), std::runtime_error);                  // reciprocal
      TEST_THROW(m1n2.reciprocal(m2n2), std::runtime_error);
    }
#endif
  }

  TEUCHOS_UNIT_TEST_TEMPLATE_7_DECL( MultiVector, Constructor_Epetra, M, MV, V, Scalar, LocalOrdinal, GlobalOrdinal, Node )
  {
#ifdef HAVE_XPETRA_EPETRA
    RCP<const Teuchos::Comm<int> > comm = getDefaultComm();

    {
      TEST_NOTHROW(M(10, 0, comm));
      TEST_NOTHROW(MV(Teuchos::rcp(new M(10, 0, comm)), 3));
    }

#if defined(HAVE_XPETRA_TPETRA) && defined(HAVE_TPETRA_INST_PTHREAD)
    {
      typedef Xpetra::EpetraMapT<GlobalOrdinal, Kokkos::Compat::KokkosThreadsWrapperNode> mm;
      TEST_THROW(mm(10, 0, comm), Xpetra::Exceptions::RuntimeError);
      typedef Xpetra::EpetraMultiVectorT<GlobalOrdinal, Kokkos::Compat::KokkosThreadsWrapperNode> mx;
      TEST_THROW(mx(Teuchos::null, 3), Xpetra::Exceptions::RuntimeError);
    }
#endif
#if defined(HAVE_XPETRA_TPETRA) && defined(HAVE_TPETRA_INST_CUDA)
    {
      typedef Xpetra::EpetraMapT<GlobalOrdinal, Kokkos::Compat::KokkosCudaWrapperNode> mm;
      TEST_THROW(mm(10, 0, comm), Xpetra::Exceptions::RuntimeError);
      typedef Xpetra::EpetraMultiVectorT<GlobalOrdinal, Kokkos::Compat::KokkosCudaWrapperNode> mx;
      TEST_THROW(mx(Teuchos::null, 3), Xpetra::Exceptions::RuntimeError);
    }
#endif

#endif
  }

  ////
  TEUCHOS_UNIT_TEST_TEMPLATE_7_DECL( MultiVector, Typedefs,        M, MV, V, Scalar, LocalOrdinal, GlobalOrdinal, Node )
  {
#ifdef HAVE_XPETRA_TPETRA
    typedef typename MV::scalar_type scalar_type;
    typedef typename MV::local_ordinal_type local_ordinal_type;
    typedef typename MV::global_ordinal_type global_ordinal_type;
    typedef typename MV::node_type node_type;
    TEST_EQUALITY_CONST( (is_same< scalar_type         , Scalar        >::value) == true, true );
    TEST_EQUALITY_CONST( (is_same< local_ordinal_type  , LocalOrdinal  >::value) == true, true );
    TEST_EQUALITY_CONST( (is_same< global_ordinal_type , GlobalOrdinal >::value) == true, true );
    TEST_EQUALITY_CONST( (is_same< node_type           , Node          >::value) == true, true );
#endif
  }

//
// INSTANTIATIONS
//
#ifdef HAVE_XPETRA_TPETRA

  #define XPETRA_TPETRA_TYPES( S, LO, GO, N) \
    typedef typename Xpetra::TpetraMap<LO,GO,N> M##LO##GO##N; \
    typedef typename Xpetra::TpetraMultiVector<S,LO,GO,N> MV##S##LO##GO##N; \
    typedef typename Xpetra::TpetraVector<S,LO,GO,N> V##S##LO##GO##N;       \

#endif

#ifdef HAVE_XPETRA_EPETRA

  #define XPETRA_EPETRA_NO_ORDINAL_SCALAR_TYPES( S, LO, GO, N) \
    typedef typename Xpetra::EpetraMapT<GO,N> M##LO##GO##N; \
    typedef typename Xpetra::EpetraMultiVectorT<GO,N> MV##S##LO##GO##N; \
    typedef typename Xpetra::EpetraVectorT<GO,N> V##S##LO##GO##N;       \

  #define XPETRA_EPETRA_ORDINAL_SCALAR_TYPES( S, LO, GO, N) \
    typedef typename Xpetra::EpetraIntMultiVectorT<GO,N> MV##S##LO##GO##N; \
    typedef typename Xpetra::EpetraIntVectorT<GO,N> V##S##LO##GO##N;       \

#endif

// List of tests which run only with Tpetra
#define XP_TPETRA_MULTIVECTOR_INSTANT(S,LO,GO,N) \
      TEUCHOS_UNIT_TEST_TEMPLATE_7_INSTANT( MultiVector, BadConstLDA                , M##LO##GO##N , MV##S##LO##GO##N , V##S##LO##GO##N , S, LO, GO, N ) \
      TEUCHOS_UNIT_TEST_TEMPLATE_7_INSTANT( MultiVector, Describable                , M##LO##GO##N , MV##S##LO##GO##N , V##S##LO##GO##N , S, LO, GO, N ) \
      TEUCHOS_UNIT_TEST_TEMPLATE_7_INSTANT( MultiVector, ElementWiseMultiply        , M##LO##GO##N , MV##S##LO##GO##N , V##S##LO##GO##N , S, LO, GO, N ) \
      TEUCHOS_UNIT_TEST_TEMPLATE_6_INSTANT( MultiVector, CopyConst                  , MV##S##LO##GO##N , V##S##LO##GO##N , S, LO, GO, N ) \
      TEUCHOS_UNIT_TEST_TEMPLATE_6_INSTANT(      Vector, CopyConst                  , MV##S##LO##GO##N , V##S##LO##GO##N , S, LO, GO, N ) \
      TEUCHOS_UNIT_TEST_TEMPLATE_6_INSTANT(      Vector, Indexing                   , MV##S##LO##GO##N , V##S##LO##GO##N , S, LO, GO, N ) \
      TEUCHOS_UNIT_TEST_TEMPLATE_6_INSTANT( MultiVector, OrthoDot                   , MV##S##LO##GO##N , V##S##LO##GO##N , S, LO, GO, N ) \
      TEUCHOS_UNIT_TEST_TEMPLATE_6_INSTANT( MultiVector, CountDot                   , MV##S##LO##GO##N , V##S##LO##GO##N , S, LO, GO, N ) \
      TEUCHOS_UNIT_TEST_TEMPLATE_6_INSTANT( MultiVector, CountDotNonTrivLDA         , MV##S##LO##GO##N , V##S##LO##GO##N , S, LO, GO, N ) \
      TEUCHOS_UNIT_TEST_TEMPLATE_6_INSTANT( MultiVector, CountNorm1                 , MV##S##LO##GO##N , V##S##LO##GO##N , S, LO, GO, N ) \
      TEUCHOS_UNIT_TEST_TEMPLATE_6_INSTANT( MultiVector, CountNormInf               , MV##S##LO##GO##N , V##S##LO##GO##N , S, LO, GO, N ) \
      TEUCHOS_UNIT_TEST_TEMPLATE_6_INSTANT( MultiVector, Norm2                      , MV##S##LO##GO##N , V##S##LO##GO##N , S, LO, GO, N ) \
      TEUCHOS_UNIT_TEST_TEMPLATE_6_INSTANT( MultiVector, CopyView                   , MV##S##LO##GO##N , V##S##LO##GO##N , S, LO, GO, N ) \
      TEUCHOS_UNIT_TEST_TEMPLATE_6_INSTANT( MultiVector, OffsetView                 , MV##S##LO##GO##N , V##S##LO##GO##N , S, LO, GO, N ) \
      TEUCHOS_UNIT_TEST_TEMPLATE_6_INSTANT( MultiVector, ZeroScaleUpdate            , MV##S##LO##GO##N , V##S##LO##GO##N , S, LO, GO, N ) \
      TEUCHOS_UNIT_TEST_TEMPLATE_6_INSTANT(      Vector, ZeroScaleUpdate            , MV##S##LO##GO##N , V##S##LO##GO##N , S, LO, GO, N ) \
      TEUCHOS_UNIT_TEST_TEMPLATE_6_INSTANT( MultiVector, BadMultiply                , MV##S##LO##GO##N , V##S##LO##GO##N , S, LO, GO, N ) \
      TEUCHOS_UNIT_TEST_TEMPLATE_6_INSTANT( MultiVector, SingleVecNormalize         , MV##S##LO##GO##N , V##S##LO##GO##N , S, LO, GO, N ) \
      TEUCHOS_UNIT_TEST_TEMPLATE_6_INSTANT( MultiVector, Multiply                   , MV##S##LO##GO##N , V##S##LO##GO##N , S, LO, GO, N ) \
      TEUCHOS_UNIT_TEST_TEMPLATE_6_INSTANT( MultiVector, BadCombinations            , MV##S##LO##GO##N , V##S##LO##GO##N , S, LO, GO, N ) \
      TEUCHOS_UNIT_TEST_TEMPLATE_7_INSTANT( MultiVector, NonMemberConstructorsTpetra, M##LO##GO##N , MV##S##LO##GO##N , V##S##LO##GO##N , S, LO, GO, N ) \
      TEUCHOS_UNIT_TEST_TEMPLATE_7_INSTANT(      Vector, AssignmentDeepCopies       , M##LO##GO##N , MV##S##LO##GO##N , V##S##LO##GO##N , S, LO, GO, N )

// List of tests which run only with Epetra
#define XP_EPETRA_MULTIVECTOR_INSTANT(S,LO,GO,N) \
      TEUCHOS_UNIT_TEST_TEMPLATE_7_INSTANT( MultiVector, NonMemberConstructorsEpetra, M##LO##GO##N , MV##S##LO##GO##N , V##S##LO##GO##N , S, LO, GO, N ) \
      TEUCHOS_UNIT_TEST_TEMPLATE_7_INSTANT( MultiVector, Constructor_Epetra, M##LO##GO##N , MV##S##LO##GO##N , V##S##LO##GO##N , S, LO, GO, N )

// list of all tests which run both with Epetra and Tpetra
// TODO: move more lists from the upper list to this list
#define XP_MULTIVECTOR_NO_ORDINAL_INSTANT(S,LO,GO,N)                           \
      TEUCHOS_UNIT_TEST_TEMPLATE_7_INSTANT( MultiVector, AssignmentDeepCopies , M##LO##GO##N , MV##S##LO##GO##N , V##S##LO##GO##N , S, LO, GO, N ) \
      TEUCHOS_UNIT_TEST_TEMPLATE_7_INSTANT( MultiVector, GetVector            , M##LO##GO##N , MV##S##LO##GO##N , V##S##LO##GO##N , S, LO, GO, N ) \
      TEUCHOS_UNIT_TEST_TEMPLATE_7_INSTANT( MultiVector, BadConstNumVecs      , M##LO##GO##N , MV##S##LO##GO##N , V##S##LO##GO##N , S, LO, GO, N ) \
      TEUCHOS_UNIT_TEST_TEMPLATE_7_INSTANT( MultiVector, BadConstAA           , M##LO##GO##N , MV##S##LO##GO##N , V##S##LO##GO##N , S, LO, GO, N )

#define XP_MULTIVECTOR_INSTANT(S,LO,GO,N) \
      TEUCHOS_UNIT_TEST_TEMPLATE_7_INSTANT( MultiVector, basic                , M##LO##GO##N , MV##S##LO##GO##N , V##S##LO##GO##N , S, LO, GO, N ) \
      TEUCHOS_UNIT_TEST_TEMPLATE_7_INSTANT( MultiVector, Typedefs             , M##LO##GO##N , MV##S##LO##GO##N , V##S##LO##GO##N , S, LO, GO, N )

// can we relax the INT INT?
#if defined(HAVE_XPETRA_TPETRA)

#include <TpetraCore_config.h>
#include <TpetraCore_ETIHelperMacros.h>

TPETRA_ETI_MANGLING_TYPEDEFS()
TPETRA_INSTANTIATE_SLGN ( XPETRA_TPETRA_TYPES )
TPETRA_INSTANTIATE_SLGN ( XP_MULTIVECTOR_INSTANT )
// no ordinal types as scalar for testing as some tests use ScalarTraits::eps...
// TPETRA_INSTANTIATE_SLGN_NO_ORDINAL_SCALAR ( XPETRA_TPETRA_NO_ORDINAL_TYPES )
TPETRA_INSTANTIATE_SLGN_NO_ORDINAL_SCALAR ( XP_MULTIVECTOR_NO_ORDINAL_INSTANT )
TPETRA_INSTANTIATE_SLGN_NO_ORDINAL_SCALAR ( XP_TPETRA_MULTIVECTOR_INSTANT )

#endif


#if defined(HAVE_XPETRA_EPETRA)

#include "Xpetra_Map.hpp" // defines EpetraNode
typedef Xpetra::EpetraNode EpetraNode;
#ifndef XPETRA_EPETRA_NO_32BIT_GLOBAL_INDICES
XPETRA_EPETRA_NO_ORDINAL_SCALAR_TYPES(double,int,int,EpetraNode)
XPETRA_EPETRA_ORDINAL_SCALAR_TYPES(int,int,int,EpetraNode)
XP_MULTIVECTOR_NO_ORDINAL_INSTANT(double,int,int,EpetraNode)
XP_MULTIVECTOR_INSTANT(int,int,int,EpetraNode)
XP_EPETRA_MULTIVECTOR_INSTANT(double,int,int,EpetraNode)
#endif
#ifndef XPETRA_EPETRA_NO_64BIT_GLOBAL_INDICES
typedef long long LongLong;
XPETRA_EPETRA_NO_ORDINAL_SCALAR_TYPES(double,int,LongLong,EpetraNode)
XPETRA_EPETRA_ORDINAL_SCALAR_TYPES(int,int,LongLong,EpetraNode)
XP_MULTIVECTOR_INSTANT(int,int,LongLong,EpetraNode)
XP_MULTIVECTOR_NO_ORDINAL_INSTANT(double,int,LongLong,EpetraNode)
XP_EPETRA_MULTIVECTOR_INSTANT(double,int,LongLong,EpetraNode)
#endif
#endif

}